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Abstract
Some images are more memorable than others, yet the
underlying neural mechanisms of memorability are not
fully understood. In this study, we introduce a novel
framework, “MemBrainGen”, that connects memorabil-
ity, a behaviorally defined feature of images, with the hu-
man brain responses. The framework utilizes generative
deep neural network models to investigate how the hu-
man brain processes images based on their memorability
across visual and memory regions of the human brain.
Using MemBrainGen, we successfully manipulated the
memorability of natural images in both increasing and
decreasing directions, and observed that predicted acti-
vations in early-mid visual regions except for V1 showed
no difference in response to memorability changes. How-
ever, brain regions associated with face and body cate-
gories, and the amygdala exhibited increased predicted
activation when image memorability was increased. Most
notably, V1 and place-associated regions showed lower
predicted activation when images with increased memo-
rability were presented to the model. We confirm our find-
ings by demonstrating that brain activation-maximized
images have higher memorability scores compared to
their original counterparts in high-level visual and mem-
ory regions. Reversely, the memorability scores of these
images were decreased in the place-selective regions.
We further solidify our tested hypotheses by analyzing
an independent fMRI dataset. From the univariate anal-
ysis with the independent dataset, we found that the di-
rection of changes in brain activation is consistent with
the predictions of our framework. This investigation con-
tributes to our understanding of the cognitive processes
involved in visual memory. It demonstrates the poten-
tial of integrating generative models with neuroimaging
to explore the causal links between brain functions and
behaviour, paving the way for the formulation of experi-
mentally testable hypotheses.
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Introduction
It has been shown that memorability is an intrinsic property of
images, consistently observed across different ages and even
species (Isola et al., 2011; Jaegle et al., 2019; Almog et al.,
2023), and it is a computable feature which can be predicted
from models (Khosla et al., 2015; Needell & Bainbridge, 2022;
Younesi & Mohsenzadeh, 2024). It is still not fully understood
what features make an image more memorable, and the neu-
ral mechanisms shaping this behavioral phenomenon. Previ-
ous studies using human fMRI have demonstrated that varia-
tions in response magnitude within the high-level visual cortex
correlate well with the memorability of faces and scene images
(Bainbridge et al., 2017; Bainbridge & Rissman, 2018; Lahner
et al., 2024). In this work, we aimed to explore how the brain
reacts differently to variations in the memorability of images

by using a diverse set of images beyond faces and scenes.
Inspired by the work of Gu et al. (2022), our research lever-
ages artificial deep neural network (DNN) models as brain en-
coders and generative adversarial network (GAN) models for
cognitive neuroscientific discovery, integrating these with hu-
man fMRI data to analyze responses in the face, body, place,
and early visual regions of interest (ROI), as well as memory-
related ROIs such as the hippocampus and amygdala.

Framework Overview

Figure 1: A schematic diagram of MemBrainGen and exam-
ples of memorability-modified NSD images.

The Natural Scenes Dataset (NSD) contains 7T fMRI re-
sponses from 8 subjects to natural images (Allen et al., 2022).
We trained the encoding model for each subject, using re-
sponses from 1,000 images that were shared across all sub-
jects as the validation set.

We manipulated the memorability of images in both in-
creasing and decreasing directions (Figure 1A). As NSD
lacked memorability scores, we used MemNet (Khosla et al.,
2015) to predict. We utilized a GAN inversion approach to
convert images into latent vectors for the memorability modifi-
cation (Younesi & Mohsenzadeh, 2022). StyleGAN-XL (Sauer
et al., 2022) pre-trained on ImageNet was used for the inver-
sion.

We first excluded images not shown to all subjects,
screened out overly disrupted images, and excluded those
altered beyond recognition after memorability control. The
screening process resulted in 102 images from the shared



1,000 in NSD used for the experiment. The feature-weighted
receptive field (fwRF) model with ResNet-18 (He et al., 2016)
was used as the brain encoder (St-Yves & Naselaris, 2018)
(Figure 1B).

Results
Effects of image memorability modification on brain
activation

Figure 2: Average predicted brain activation per ROI based on
memorability alteration.

To examine the effects of memorability modification of im-
age stimulus on predicted brain activations, 102 images from
NSD were reconstructed with increased and decreased mem-
orability scores. Figure 2 depicts the magnitude of predicted
brain activations for each ROI analyzed. Predicted activations
of V4, face and body ROIs and amygdala increased with in-
creased memorability. More notably, V1 and none of the place
ROIs showed any significant changes in our anticipated direc-
tion but exhibited the reverse, showing less active responses
when images with increased memorability were presented.

Memorability of brain activation-maximized images
We posited that images capable of eliciting higher brain activ-
ity within the higher-level ROIs would yield higher memorabil-
ity scores. Using NeuroGen (Gu et al., 2022), we generated
320 pairs of initial and activation-maximized images for each
ROI. Figure 3 shows changes in memorability between those
image pairs per ROI. No significant difference was found in
memorability scores between activation-maximized and initial
images for most of the early-mid visual ROIs, supporting our
hypothesis that early-mid visual regions do not exert a signif-
icant influence on memorability. However, the memorability
of activation-maximized images in the remaining ROIs exhib-
ited a significant increase, except for the place ROIs. For the
place ROIs, the memorability score decreased significantly for
the activation-maximized images, which also supports the re-
verse pattern of those ROIs predicted using MemBrainGen.

Figure 3: Changes in memorability when the activation of the
target brain region was maximized.

Table 1: Univariate analysis results on the fMRI dataset by
Lahner et al. (2024).

ROI p-value Cohen’s d Effect direction
V1 0.9648 -0.0116 LM >HM
V2 0.8381 -0.0538 LM >HM
V3 0.3753 0.2364 HM >LM
V4 0.0092* 0.7798 HM >LM
RSC 0.1484 -0.3950 LM >HM
FFC 0.0000*** 1.6306 HM >LM
LO1 0.0012** 1.0454 HM >LM
LO2 0.0011** 1.0516 HM >LM
LO3 0.0491 0.5562 HM >LM
L-HPC 0.7497 0.0840 HM >LM
R-HPC 0.8291 -0.0568 LM >HM
L-AMG 0.9512 -0.0167 LM >HM
R-AMG 0.9558 -0.0151 LM >HM

Testing generated hypotheses on an independent
fMRI dataset
We conducted an univariate analysis using an independent
fMRI dataset (Lahner et al., 2024). The dataset consists
of 78 pairs of semantically similar images from 15 subjects.
The analysis revealed that V4 (p <0.05), FFC (p <0.001),
LO1, and LO2 (p <0.01) exhibit higher beta values when high
memorable images are shown, supporting our findings that
responses in higher visual perceptual areas increase when
high memorable images are presented. We also observed
that R-HPC, L-AMG, R-AMG, and RSC showed the opposite
response (Table 1), with higher activation when low memo-
rable images were shown; however, this difference did not re-
main significant after correcting for multiple comparisons at α

= 0.05.
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