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Abstract 
To explore the correspondence between artificial 
neural networks and brain function, we tested three 
models—trained agent, untrained agent, and game 
RAM—on their capacity to use game data to predict 
brain activity (fMRI) in humans playing Super Mario 
Bros. All brain encoding models performed similarly 
within the training distribution (training levels), but 
none generalized to out-of-distribution (OOD) levels. 
The OOD performance drop was generally greater 
than the difference between models. Our results 
underscore how current brain encoding approaches 
may overstate brain-model similarity, and highlight 
the critical importance of evaluating generalization 
when using brain scores to compare models. 

Keywords: brain encoding; reinforcement 
learning; out-of-distribution generalization; 
model interpretability;  

Introduction 
Many brain encoding models use AI-derived latent 
representations to predict neural activity from complex 
stimuli. Voxel-wise models have effectively mapped 
passive perception of natural images, videos, and text 
onto brain responses (e.g. Caucheteux & King, 2022; 
Gifford, Bersch, et al., 2025; Gifford, Cichy, et al., 2025). 
Additionally, deep neural networks trained on behavioral 
tasks have emerged as powerful feature extractors, 
improving neural prediction across both passive and 
active domains (Yamins et al., 2014; Cross et al., 2021; 
Kemtur, 2024). 

A common assumption is that high encoding 
accuracy reflects convergence between artificial and 
biological representations (Schrimpf et al., 2020). Some 
suggest that encoding models approach the "noise 
ceiling" on certain benchmarks, implying that AI models 
may process specific stimuli in genuinely brain-like ways 
(Caucheteux & King, 2022). This view aligns with the 
"Platonic representation hypothesis" (Huh et al., 2024), 
which posits that internal representations, shaped by the 
statistical structure of the world, naturally converge 
across systems regardless of architecture. 

However, high accuracy does not guarantee 
functional convergence. Models may overfit 
stimulus-specific details rather than capturing true 
abstractions (Gifford, Cichy, et al., 2025). A more 
stringent test is out-of-distribution (OOD) generalization: 
predicting brain responses to novel contexts unseen 
during training. OOD evaluation helps determine 
whether apparent convergence reflects meaningful 
functional alignment or superficial overfitting (Shirakawa 
et al., 2024).  

We tested OOD generalization in a naturalistic 
videogame setting using whole-brain fMRI from 

participants playing Super Mario Bros. (Nintendo, 1983). 
We evaluated three encoding models: (1) a PPO-trained 
reinforcement learning agent, (2) an untrained network 
with the same architecture, and (3) the raw emulator 
RAM state. Brain predictions were compared on training 
levels (within-distribution) and unseen levels from the 
same game (OOD). 

Of note, we did not expect models to truly 
converge with the brain. Reinforcement learning agents 
are notoriously brittle, often failing to generalize to even 
minor changes in context—unlike humans. Untrained 
networks encode random features, and a NES RAM 
encodes everything in the game, both in a rather 
unbrain-like fashion. Based on the work by (Cross et al., 
2021), we expected within-distribution encoding 
performance to follow the order PPO > Untrained ≥ 
RAM. Importantly, we also predicted a dramatic drop in 
performance for all three models during OOD encoding, 
which would bring quantitative evidence that the brain’s 
functional representations diverge substantially from 
those of a NES videogame console or a four-layer 
convolutional neural network. 

Methods 

Data. We used fMRI and behavioral data from the 
Courtois Neuromod Project (https://cneuromod.ca). 
Five participants played 22 levels of Super Mario 
Bros. during fMRI scanning (total: 84 h; 13–18 h per 
participant). Functional images were acquired on a 
3T Siemens Prisma Fit scanner (TR = 1.49 s; 2 mm 
isotropic), preprocessed with fMRIPrep (Esteban et 
al., 2018; v20.2 LTS), and projected onto the MIST 
atlas (1,095 parcels; Urchs et al., 2019). 
Brain encoding experiments. A four-layer 
convolutional neural network was trained to play 20 
levels of Super Mario Bros. using PPO 
reinforcement learning (Schulman et al., 2017) with 
rewards based on forward movement and survival. 
We extracted activations from the third layer (3,872 
features). The same procedure was repeated with 
an untrained network of identical architecture. 
Encoding models were constructed using ridge 
regression to predict parcel-wise BOLD responses 
from these features, using participants’ gameplay 
replays as ANN input. In parallel, we trained a ridge 
regression model using the game’s RAM state 
(accessed via gym-retro; Nichol et al., 2018), 
reduced from 13,321 to 3,872 features via random 
projection. 
Model validation. Performance was evaluated on 
both within-distribution (WD) and out-of-distribution 
(OOD) tasks. WD scores were computed on held-out 
replays from the 20 training levels (80/10/10% 
train/val/test, stratified by level completion). OOD 
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scores were computed on replays from two novel 
levels (5–1 and 6–3) unseen during training. 

 
Figure 1: Schematics of the brain encoding pipeline. 
Human participants played the videogame Super 
Mario Bros. on a console emulator. Three brain 
encoding experiments were then performed using 

activations of an intermediary layer from (1) a 
reinforcement learning agent trained with PPO and 
(2) an untrained agent of identical architecture, or (3) 
using the game memory states (RAM) after random 
projection to reduce dimensionality. 

Results 

Brain encoding scores reflect the proportion of 
variance explained in each brain parcel. The WD 
encoding score maps were qualitatively similar 
between the three models (Fig. 2A, average across 
subjects). Encoding performance peaked in the 
ventral and dorsal visual networks as well as the 
dorsal attentional network (with R2 about 0.3). WD 
differences between models were small but 
significant, with PPO > Untrained > RAM for almost 
all subjects. The OOD encoding score maps were 
dramatically lower than WD (Fig. 2B, average 
across subjects), although the topography of the 
maps remained consistent with WD, peaking in the 
same networks. Across most subjects and models, 
the effect of domain shift (i.e., the drop from WD to 
OOD encoding performance) exceeded any 
differences observed between model types under 
either condition (Fig. 2C). This result indicates that 
the distribution shift had a much stronger impact 
on encoding performance than the choice of 
model. 

 
Figure 2: Brain encoding results. A and B show the results on within-distribution (WD) and out-of-distribution 
(OOD) testing, averaged across participants. C shows the changes in R2 when comparing WD to OOD testing 
(dark bars) relative to the changes observed when comparing models (light bars). 

Discussion 
All models achieved relatively high brain encoding 
scores under within-distribution (WD) conditions, 
with only modest differences observed between 
models. In contrast, out-of-distribution (OOD) scores 
were substantially lower, indicating that none of the 
models generalized well beyond their training 
distribution. These findings highlight the importance 
of evaluating brain encoding models in settings that 

go beyond the narrow confines of their training data. 
In this context, videogames provide an especially 
suitable paradigm: they offer rich and dynamic 
environments  while still allowing for highly controlled 
variations across contexts and tasks. Our results 
demonstrate that, if brain scores are used to 
adjudicate between different models of brain 
function, the size and diversity of the stimulus set is 
critical to reach robust conclusions. 
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Data and code 
The code used to generate this analysis is shared 
through the following repository: 
https://zenodo.org/records/15642065. Data request 
is available via the website 
https://www.cneuromod.ca/, or  the Canadian Open 
Neuroscience Platform’s portal 
(https://portal.conp.ca/) where 4 of the subjects have 
made their data publicly available. 
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