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Abstract
Neural responses encode information that is useful for a
variety of downstream tasks; however, many methods for
comparing neural representations do not explicitly lever-
age this perspective and instead highlight geometric in-
variances. Here, we show that many representational
similarity measures can be equivalently motivated from
a decoding perspective. Specifically, measures like CKA
and CCA are shown to quantify the average alignment be-
tween optimal linear readouts across a distribution of de-
coding tasks. This approach suggests a metric on neural
representations in which the distance between represen-
tations directly quantifies differences in the decoding of
neural data. We demonstrate this in an ensemble of DNNs
trained for image classification and human fMRI repre-
sentations from the Natural Scenes Dataset. Our work
demonstrates a tight link between the geometry of neural
representations and the ability to linearly decode infor-
mation. This perspective suggests new ways of measur-
ing similarity between neural systems and also provides
novel, unifying interpretations of existing measures.

Summary
Developing methodologies for quantifying similarity between
high-dimensional neural representations is an active research
direction in computational neuroscience. The analyses en-
abled by these similarity measures have implications for un-
derstanding variability in neural computations across individu-
als and species (Kriegeskorte et al., 2008), as well as for com-
parisons between biological systems and computational mod-
els (Schrimpf et al., 2018). Concurrently, one common ap-
proach used to interpret neural systems is to build regression
models or “decoders” that reconstruct features of the stimu-
lus from neural responses. Here, we leverage this idea to
quantify the similarity among different neural systems. Our
approach is distinct from typical motivations behind represen-
tational (dis)similarity measures like representational similarity
analysis (RSA), centered kernel alignment (CKA), canonical
correlation analysis (CCA), and Procrustes shape distance,
which highlight geometric intuition and invariances to orthogo-
nal or affine transformations but lack interpretations in terms of
the information encoded. However, we show that CKA, CCA,
and other measures can be equivalently motivated as meth-
ods that compare similarity in decoding patterns.

Methods
Suppose we record the activity of NX neurons in one ani-
mal and NY neurons in a second animal, both in response
to M stimuli (e.g. the activity in response to a set of M nat-
ural images). These datasets can be represented as a pair
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Figure 1: Schematic of the proposed framework for comparing
representations X and Y (each dot represents mean neural re-
sponses to one of M conditions) in terms of a decoding target
z. The decoding similarity is the inner product of their optimal
predictors (far right panel): ⟨Xw∗,Y v∗⟩.

of matrices, X ∈RM×NX and Y ∈RM×NY , and we assume the
columns of X and Y have been normalized to have zero mean.
Here, we propose a family of metrics based on the similarity of
decoded information and show that this framework connects
many existing methods of representational similarity to notions
of similarity in terms in terms of behavior on decoding tasks.

We consider the problem of decoding a target vector z∈RM

from neural population responses by a linear function X 7→Xw
where w∈RNX (Fig. 1). Specifically, we consider the following
class of regression problems:

w∗ = argmax
w

{
1
M

z⊤Xw− 1
2

w⊤G(X)w
}
, (1)

where G(·) maps RM×N to the set of positive definite N ×N
matrices. When G(X) = CX + λI, where CX := M−1X⊤X ,
then w∗ coincides with the optimum of the ridge regression
problem: argminw M−1∥z−Xw∥2

2 + λ∥w∥2
2. In general, we

can interpret Eq. 1 as maximizing the similarity between the
target z and the linear readout Xw, subject to a penalty term
on w that depends on G(·). We let v∗ ∈ RNY denote the opti-
mal decoding vector for Y .

A straightforward way to quantify the alignment between the
decoded signals is to compute the inner product between the
linear predictors for a particular decoding target z, which we
will call the decoding similarity :

⟨Xw∗,Y v∗⟩= z⊤KG,X KG,Y z = Tr[KG,X KG,Y zz⊤] (2)

where KG,X := XG(X)−1X⊤ and KG,Y := Y G(Y )−1Y⊤ are
similarity matrices. This measures how similar the predictors
Xw∗ and Y v∗ are across a sampling of M conditions (Fig. 1).



Humans V4

AlexNet

ResNet 18 - 152

VGG

ConvNeXt

DenseNet

EfficientNet

GoogLeNet

Inception v3

MaxVit

MNASNet

MobileNet

ResNext

SwinTransformer

Vit-b-16


Random weights

NSD humans 
V4

Trained deep nets

Ra
nd

om
ly 

ini
tia

liz
ed

 D
NN

s
Tr

ain
ed

 D
NN

s

Human V4 fMRI data

arccos(Average Decoding Similarity)

Image index

Maximal distance decoding target z

Maximal similarity decoding task

Im
ag

e 
lo

ad
in

gs
 z
i

arccos(Centered Kernel Alignment)

arccos(Average Decoding Similarity)

Human 1

Human 1

(a)
(b)

(c) (d)

Figure 2: Decoding target z is chosen to minimize the sim-
ilarity between the penultimate layer of AlexNet and human
V4. Each element of z corresponds to an image in the COCO
dataset. The elements of z are ordered with 16 example im-
ages shown for smallest/largest elements.

When the decoding target z is not known, one could con-
sider the best/worst case scenario (i.e., maximize/minimize
the similarity with respect to z). Fig. 2 shows the sorted
maximally discriminative decoding target vector z using the
penultimate layer representation formed by AlexNet and hu-
man subject 1 V4 fMRI representation taken from the Natural
Scenes Dataset (NSD) (Allen et al., 2021), both in response to
the same 1000 COCO images. The optimal z found is some-
what interpretable as sorting images based on color or se-
mantic features, and investigating these maximally informative
probes is an interesting direction for future work. A perhaps
more intuitive and robust option–motivated by the idea that
neural representations likely encode information that is use-
ful for a variety of tasks–is to consider the average similarity
over an ensemble of decoding tasks z ∼ Pz and quantify the
average decoding similarity (ADS) by:

Ez∼Pz⟨Xw∗,Y v∗⟩= Tr[KG,X KG,Y Kz] (3)

where Kz = Ez∼Pz [zz⊤] is a measure of the correlation be-
tween decoding targets across conditions.

In the special case that Kz = I we may choose G(X) such
that the ADS exactly corresponds with commonly used rep-
resentational similarity measures (details omitted), such as
G(X) = I ⇒ CKA (Cortes, Mohri, & Rostamizadeh, 2012, def.
2) or G(X) = CX ⇒ CCA (Raghu, Gilmer, Yosinski, & Sohl-
Dickstein, 2017). These representational similarity measures
can then be interpreted as quantifying the average alignment
between optimal linear readouts (subject to a particular reg-
ularization) across a distribution of decoding tasks, and can
be interpolated between by varying the regularization param-
eters of the linear regression task. Other measures of rep-
resentational (dis)similarity can also be directly reproduced in
this framework with particular choices of regularization func-
tion G(·), such as GULP (Boix-Adsera, Lawrence, Stepani-
ants, & Rigollet, 2022), and we derive upper and lower bounds
with the Procrustes distance.

This decoding setup suggests a simple method to construct
an interpretable metric for neural representations in terms
their decoding similarity on human V4 fMRI data (Fig. 3).
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Figure 3: (a) Arccos(ADS) distance matrix for every pair
of DNN representations and human fMRI representations.
(b) Representations visualized as points in a low dimen-
sional space using MDS and PCA. (c-d) Restricting to only
trained DNN representations, the low-dimensional visualiza-
tion shows similar clustering behavior between average de-
coding similarity and CKA.

Specifically, we define the decoding targets zi ∈ RM as the
neural fMRI responses of voxel i in human subject 1 V4 to the
M = 1000 input COCO images that were shown to all NSD ex-
periment participants. We then can compute the similarity with
respect to average decoding of human 1’s V4 responses be-
tween every pair in an ensemble of 56 (trained and untrained)
DNNs and other human individuals, and this score can be con-
verted into an angular distance by taking the arccosine.

Fig. 3(a) shows the distance matrix formed by taking the
arccosine of the ADS between the penultimate layer of the
DNNs and four human V4 fMRI representations. Each neural
representation is now a point in this metric space, which can
be visualized in a low dimensional Euclidean space using mul-
tidimensional scaling (MDS) and principal components analy-
sis (PCA) (b-c). Comparing panel (c) and (d) highlights the
close connection between ADS and CKA described above–
even in this relaxed case of Kz ̸= I–perhaps motivating the
use of CKA as a reasonable aggregate metric when the de-
coding target covariance is approximately identity, or when the
choice of decoding target is not clear.

Our method differs from the commonly used approach of
computing the linear predictivity of brain data from deep rep-
resentations (Conwell, Prince, Kay, Alvarez, & Konkle, 2023),
resulting in a one-dimensional ranking of how well the DNNs
predict neural data. In particular, our method is informative of
how well each network can predict neural activity (distances
between each representation and human 1’s representation)
and how similar the representations are to each other in terms
linear decoding of human 1’s representation (pairwise dis-
tances between network representations). This allows us to
observe clustering structure with architecture in Fig. 3 (a-d).
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