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Abstract

How does knowledge affect visual exploration? Here,
we investigated whether learning about an object would
change participants’ gaze behavior. Adults (N = 22) wore
a head-mounted eye tracker while exploring real-world
objects that were relatively unfamiliar (e.g., a rolodex).
We assessed learning-related differences in both (1) ocu-
lomotor behavior (e.g., fixation durations) and (2) par-
ticipants’ fixated visual content by leveraging embed-
dings from a large vision-language model. We find evi-
dence that before learning, gaze is more exploratory (i.e.,
shorter, more frequent fixations). Moreover, we find that
differences in fixated content across participants are in-
creased after learning about an object, suggesting that
knowledge states may contribute to differences in gaze
behavior. These results underscore the importance for
future work of quantifying individual knowledge states to
further leverage naturalistic eye tracking as a window into
learning and cognitive development.
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Introduction

How does what we know influence where and how we look?
Research with adults provides some clues that individual dif-
ferences in semantic knowledge can change gaze behavior:
for example, individuals with subject-matter expertise in cer-
tain domains (e.g., medical imaging) tend to visually explore in
different ways than non-experts (Drew et al.,2013). But differ-
ences in semantic knowledge are not limited to expertise: in-
dividuals’ knowledge about particular objects or contexts can
be shaped by the accumulation of everyday experiences. In-
deed, in studies of cognitive development, infants’ gaze has
been a critical tool for inferring knowledge states (Kunin et al.,
2024} [Margoni et al., 2024); preverbal infants use eye move-
ments to explore and learn about people and objects in their
environments (Yu & Smith, 2011) well before they are able to
locomote independently or express their thoughts with words.

However, it is unclear how or whether gaze behavior during
everyday learning experiences reflects knowledge differences
in either children or adults. Eye tracking paradigms often lack
features of everyday viewing, in turn minimizing individual vari-
ability. For example, participants are often passively shown
static images on a computer screen for a few seconds each
(Xu et all 2014). Moreover, stimuli are often curated such
that images that individual participants may have interacted
with extensively or not at all are excluded. Although some
eye tracking studies have characterized stable individual dif-
ferences in gaze (Broda & de Haas| 2024; De Haas et al.,
2019), it is far less common to characterize variability in indi-
viduals’ knowledge or examine how it changes gaze behavior.

Understanding how an individual’s specific semantic knowl-
edge impacts their gaze is an important step for further ad-
vancing gaze behavior as a tool for both cognitive and de-
velopmental science. As a first step, here we aimed to un-
derstand how adults’ gaze during naturalistic viewing is influ-

enced by knowledge differences about everyday but uncom-
mon objects. Adult participants (N = 22) engaged in an object
learning task while wearing a head-mounted eye tracker. We
compared participants’ gaze behavior before and after they
learned about objects with which we anticipated they would
have limited or varying amounts of expertise (e.g., rolodex,
french press, floppy disk). Participants explored each object
visually and manually before and after reading a short infor-
mational passage about each object (Fig. 1A). We used these
phases as a coarse proxy for participants’ knowledge state dif-
ferences about these objects.

We predicted that lower knowledge states would be marked
by more exploratory gaze behavior, and we examined two po-
tential signatures of exploration: 1) changes in oculomotor be-
havior (e.g., reduced duration, increased number of fixations
(Gameiro et al.,|2017)) and 2) changes in fixated content (e.g.,
variation in the specific object views selected by a participant).

Methods
Procedure

Participants (N = 22 adults; University undergraduates, aver-
age age = 20.59 years, range 18 - 25) wore a head-mounted
eye tracker (Pupil Labs “Neon”) while they explored up to 12
objects in a randomized order: (stethoscope, french press,
three hole punch, fishing reel, rolodex, blood pressure cuff,
bulb planter, hand mixer, crank flashlight, shoe horn, pocket
radio, floppy disk). Each trial had exploration blocks, passage
reading blocks, and verbal description blocks where partici-
pants described what they knew about each object (verbal de-
scriptions not analyzed here). Participants were encouraged
to learn as much as they could from the example object by vi-
sually exploring and handling it without time limits; participants
spent up to an hour in the overall paradigm.

Analysis

We analyzed gaze behavior before and after learning, us-
ing the passage reading block as a coarse proxy for learn-
ing across all participants. To characterize oculomotor behav-
ior, we calculated the number and mean duration of fixations
for each participant, object, and block (i.e., before and after
learning). Fixations were defined using a dispersion thresh-
old within a given window of time. We characterized the vi-
sual content that participants selectively attended with each
fixation by identifying video frames that occurred during each
fixation and then used the fixation coordinates to crop a small
portion of the frame (~20% full FOV, see Figure 1B).

To quantify variation in participants’ fixated content we
leveraged the embedding space of a large vision-language
model, CLIP (Radford et al., |2021), using a ViT-B/32 vision
encoder. Thus, the information selected with each fixation in
a given trial could be represented as a vector embedding, al-
lowing us to characterize visual content similarity across fix-
ations and participants. Vector embeddings for each fixation
were correlated with each other, using cosine similarity, both
within participants (i.e., participant’s first fixation, second fix-
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(A) Participants explored each object before and after reading a short informative passage; (B) Participant fixation

coordinates were used to crop portions of video frames, which we then used to represent fixated content as vector embeddings
within the vision encoder of CLIP (Radford et al.,|2021); (C) Embeddings for each fixation were correlated both within and across
participants; (D) Fixation embeddings were less similar across participants after they had read an informative passage (i.e. block

2, high knowledge state).

ation, etc.) and across participants (i.e., all participants’ first
fixations; Fig. 1C). Dependent variables (fixation duration, fix-
ation frequency, fixation embedding similarity) were analyzed
using linear mixed-effect models with random slopes of con-
dition (i.e., low vs. high knowledge state block) by items and
participants. To account for the generic impact of time (e.g.,
participants’ gaze may change systematically after their initial
exposure to the objects, unrelated to learning about the ob-
jects) all analyses included fixation index as a covariate. All
code and analyses, as well as photographs of object stimuli,
are available on OSF: https://osf.io/ndj2p/.

Results

We found several pieces of evidence that learning influenced
participants’ gaze behavior. First, participants made signifi-
cantly more fixations before learning about each object, during
lower knowledge state blocks (M = 55.73), than after learn-
ing, during higher knowledge state blocks (M = 29.96; fixed
effect of condition, {(23.56) = 6.45; p <0.001). Moreover,
fixation durations during lower knowledge state blocks (M =
335.67ms) were significantly shorter than during higher knowl-
edge state blocks (M = 356.20ms, fixed effect of condition,
t(173.75) = 2.57, p = 0.011).

Next, we explored what specific content participants fixated
during object exploration. When examining the fixated visual
content, we found that within a participant, fixation embed-
dings for a given trial tended to be more highly correlated
after learning (#(29.37) = 2.091, p = 0.0453). However, this

effect appeared to be driven by the overall reduced number
of fixations made after learning. Next, we examined the vari-
ability of fixation embeddings across participants in different
knowledge state blocks: we found that fixation embeddings
were less similar across participants after learning, during
high knowledge state blocks (fixed effect of condition, $(25.43)
=2.329; p =0.028, see Figure 1D). This result could be driven
by later-occurring fixation indices made by only a few par-
ticipants, resulting in noisier estimates of across-participant
similarity. To address this possibility, we repeated the across-
participants analysis on only fixation indices that exceeded a
minimum threshold of participants (N = 10). Critically, we ob-
served the same results pattern in this control analysis.

Discussion

We examined how differences in knowledge impact naturalis-
tic gaze behavior before and after learning experiences with
objects. We found that gaze was more exploratory when
participants knew less about an object (i.e., shorter, more
frequent fixations); however, we did not find clear within-
participant differences in fixation variability before vs. after
learning. In addition, across participants, fixations differed
more after learning about an object. An important future direc-
tion will be to characterize finer-grained knowledge differences
in individual participants, and to assess whether idiosyncratic
knowledge gaps influence individual differences in gaze be-
havior. Gaze behavior may offer insight into newly learned
knowledge during naturalistic object exploration.
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