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Abstract

We know that, despite their bird-like appearance, bats are
mammals. How does the brain learn such exceptions?
We conducted an fMRI study where participants catego-
rized stimuli, including exceptions. We analyzed learning
behavior using prototype and exemplar learning models.
Initially, both models equally predicted behavior, but the
exemplar model later outperformed the prototype model.
Combining stimulus similarity patterns from the learning
models with a whole-brain searchlight using representa-
tional similarity analysis (RSA), we found that the proto-
type model matched neural patterns in frontal and tempo-
ral regions, while the exemplar model matched patterns
in the visual cortex. Our findings support the idea of flex-
ible recruitment of multiple learning systems involved in
concept learning, based on task demands.

Introduction

Concept learning involves acquiring new knowledge and form-
ing category representations, such as understanding that
birds have wings and can fly. But what happens with exem-
plars that share fewer features with the category prototype,
like penguins (Fig. 1A)? There is an ongoing debate if sin-
gle system approaches, like prototype learning (categories
represented by their central tendency based on shared fea-
tures) and exemplar learning (categories represented by spe-
cific exemplars; Zeithamova et al. (2019)) can be used si-
multaneously, depending on task demands (Minda, Roark,
Kalra, & Cruz, 2024). We can explore this by manipulating
participant learning strategies, focusing on concept excep-
tions. These exceptions should push participants to use mul-
tiple learning systems, as prototype learning will lead to false
classifications of exceptions. Using representational similar-
ity analysis (RSA; Kriegeskorte, Mur, and Bandettini (2008))
on learning models and in a whole-brain searchlight, we can
test how learning models and the human brain represent con-
cepts and their exceptions in feature space. Prior studies com-
pared models to behavioral similarities, including exceptions
(Heffernan, Schlichting, & Mack, 2021; Xie & Mack, 2024), or
to neural data without exceptions (Heffernan, Adema, & Mack,
2021). We aim to fill this gap by testing how learning mod-
els reflect how the human brain learns categories and their
exceptions using RSA to compare model and brain similarity
patterns.

Methods

The study was approved by the local ethics committee and
conducted in accordance with the declaration of Helsinki. We
tested 26 participants (Mage=24.57, SDage=2.70, 15 female)
undergoing functional magnetic resonance imaging (3 Tesla;
voxel size = 1.65 x 1.65 x 5 mm; TR = 2.2 s) during a catego-
rization learning task. Across five blocks with 98 trials each,
participants sorted a stimulus into one of two categories (Fig.
1B), receiving feedback on their category decision after each
trial. Stimuli were adapted from Cook and Smith (2006). De-

pending on their colors, stimuli would either belong to cate-
gory A or B. While the two concept prototypes differed in all
dimensions, typical exemplars shared most of their colors with
the prototype of their class, except for two stimuli that shared
most of their features with the other class (exception). Us-
ing these stimuli, where participants had to prior knowledge,
we could analyze how the brain acquires concept knowledge,
but also how it handles concept exceptions. First, we tested
for learning performance differences between stimulus types
using ANOVA and post-hoc paired t-tests. We then trained
a prototype model (Minda & Smith, 2012) and an exemplar
model (Nosofsky, 2012) to predict participant responses, in-
dicating if participant choices were based on prototype or ex-
emplar learning. We computed root mean square deviation
as a measure of model fit to participants’ data and compared
model performance using paired t-tests. All results are cor-
rected for multiple comparisons using Bonferroni. We then
extracted similarity matrices from the two participant specific
models. In the prototype model, we extracted the similarity of
each stimulus to the prototype of class A and of class B for
each block. For the exemplar model, we extracted the simi-
larity of each stimulus to all other exemplars of class A and B
(Fig. 1E). In a whole-brain searchlight, we computed the cor-
responding similarities from neural data (prototype x stimulus,
stimulus x stimulus matrices per block) and correlated the sim-
ilarity of the model and brain matrices (Spearman-rho) at each
searchlight sphere location, resulting in a similarity brain map
for each model. Using randomise in FSL, we tested for sig-
nificant differences between the prototype and the exemplar
model similarity brain maps.

Results
Flexible recruitment of learning strategies

While prototypes and typicals are learned early, participants
fail to categorize the exceptions correctly in the beginning
of the experiment (main effect stimulus type: F250)=5.92,
p=0.017; main effect block: F4 100=13.58, p<0.001; inter-
action: Fg200)=4.21, p=0.008; block 2 exceptions vs. pro-
totypes: t(25=-4.20, p=0.004; block 2 exceptions vs. typicals:
t(25=-3.43, p=0.030; all others p>0.05; Fig. 1C). This distinc-
tion between the early and late blocks is also present when
comparing learning model performance: While the models
do not differ in the first block, starting from block three the
exemplar model outperforms the prototype model, suggest-
ing that participants start to employ exemplar learning (block
1: p>0.05; 2: p>0.05; 3: t(25=3.52, p=0.008; 4: t(25=5.09,
p<0.001; 5: t(25=5.06, p<0.001; Fig. 1D).

Distinct networks reflect learning model similarities

Our whole-brain searchlight revealed distinct networks for the
prototype and the exemplar model, reflecting the learning
model similarities across all five blocks (Fig 1F). While the
exemplar model is linked to neural similarities in visual ar-
eas including the lateral occipital cortex and lingual gyrus
(cluster 1: t(25=7.39; cluster 2: t»5=6.35), the prototype
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Figure 1: A) Examples for prototypes and exceptions. B) Paradigm. C) Percent of correct participant ratings for prototypes,
typicals and exceptions across the five blocks. D) Root mean square deviation (RMSD); smaller values indicate a better model
fit to participants learning performance. E) Overview of RSA procedure. F) Searchlight results. Error-bars represent standard
errors; Points represent single participants; *p<0.05; **p<0.01;"**p<0.001; Created in https://BioRender.com.

model reflects similarities in fronto-temporal regions such as
the inferior frontal and middle temporal gyrus and the poste-
rior cingulate (cluster 1:t25=4.95; cluster 2: t25=3.81;cluster
3: t(25=3.56). Results are FWE corrected using TFCE with
Pcorr<0.01 threshold.

Outlook

We show flexible recruitment of both prototype and exem-
plar learning in line with a multiple systems approach, with
the two systems being reflected in distinct brain networks in
line with current literature (Bowman, lwashita, & Zeithamova,
2020; Minda et al., 2024). Surprisingly, we did not find hip-
pocampal involvement, a region crucial for concept learning
(Mok & Love, 2023; Mack, Love, & Preston, 2016; Bowman
& Zeithamova, 2018). Thus, our current analysis focuses on
the hippocampus as a region of interest. In addition, we have
collected a behavioral follow-up including only prototypes and
typicals, to test whether it is indeed the presence of excep-

tions leading to the better fit of the exemplar model. We will
also test an additional learning model which covers both pro-
totype and surprising events (Love, Medin, & Gureckis, 2004).
Lastly, in an additional searchlight, we will test whether excep-
tions build their own subcategory (is a penguin more similar
to a kiwi because their are ’odd’ birds?), testing if exceptions
become more similar to each other compared to their own cat-
egory exemplars.
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