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Abstract

Assessing the alignment of multimodal vision-language
models (VLMs) with human perception is essential to un-
derstand how they perceive low-level visual features. A
key characteristic of human vision is the contrast sensi-
tivity function (CSF), which describes sensitivity to spa-
tial frequency at low-contrasts. Here, we introduce a
novel behavioral psychophysics-inspired method to es-
timate the CSF of chat-based VLMs by directly prompt-
ing them to judge pattern visibility at different contrasts
for each frequency. This methodology is closer to the
real experiments in psychophysics than the previously re-
ported. Using band-pass filtered noise images and a di-
verse set of prompts, we assess model responses across
multiple architectures. We find that while some models
approximate human-like CSF shape or magnitude, none
fully replicate both. Notably, prompt phrasing has a large
effect on the responses, raising concerns about prompt
stability. Our results provide a new framework for prob-
ing visual sensitivity in multimodal models and reveal
key gaps between their visual representations and human
perception.
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Introduction

Assessing the modern deep learning models’ alignment with
human vision and cognition is essential to understand their
perceptual properties. One key measure in visual neuro-
science is the contrast sensitivity function (CSF), which quan-
tifies how sensitivity to visual patterns varies for different spa-
tial frequencies (Campbell & Robson, 1968). While previous
studies have measured the CSF of convolutional nets (Q. Li et
al., 2022; Akbarinia, Morgenstern, & Gegenfurtner, 2023) and
transformer-based vision models (Akbarinia et al., 2023; Cai
et al., 2025), no work has yet explored chat-vision-language
models (CVLMs)—multimodal systems capable of integrating
vision and language through generative responses.

Traditional approaches to measuring CSF in deep networks
rely on explicit readouts from internal representations. Some
methods use classification-based readouts (Akbarinia et al.,
2023), where a classifier is trained to detect gratings at differ-
ent contrasts, conflating model perception with the classifier’s
performance. Others rely on Euclidean distance (Q. Li et al.,
2022) or cosine similarity (Cai et al., 2025) in feature space,

assuming that contrast perception corresponds to embedding
differences, which imposes a potentially unnatural metric.

Here, we propose a behavioral approach that mirrors hu-
man psychophysical experiments. Instead of relying on in-
ternal representations, we directly query the model about vi-
sual stimuli. Specifically, we present CVLMs with structured
images at different contrasts for each spatial frequency, ask-
ing whether they appear “flat” or contain a “pattern.” By sys-
tematically varying the prompts and analyzing response con-
sistency, we estimate the model’s CSF in a way that is both
naturalistic and interpretable. See figure 1 for a sketch of
the method. We validate our approach on small open-source
models (≤ 7B parameters) and plan to apply it to larger avail-
able models.

Methods

Figure 1: Method overview: Images and questions are used
as input to the chat-vision-language models. The ”Yes/No” an-
swer proportion is computed as a function of the image con-
trast for each frequency.

Stimuli: To estimate the CSF of CVLMs, we generated
256×256 images by applying bandpass filters to white noise
in the achromatic channel of ATD color space, using the
Fourier domain. This yields perceptually equivalent but sta-
tistically distinct stimuli, improving robustness over sinusoidal
gratings. Images were normalized to a fixed mean luminance
and converted to RGB for model compatibility. Each image
spans 4×4 visual degrees, aligning with the extent of human
foveal vision.

Task Design: Following human psychophysics, each
model was presented with an image and a prompt (as
”<image> Is there a pattern on the image?”) to classify it as
containing a “pattern”. To check prompt robustness, we sys-
tematically varied the prompts with 10 synonyms of “pattern”,
10 synonyms of the adjective ”visible”, and 5 prompts varying
the words order. Each contrast-frequency-prompt condition
was tested 10 times to generate psychometric functions.

CSF Estimation: For each spatial frequency, we fit a lo-



gistic function to the proportion of affirmative responses as
a function of contrast (the so-called psychometric functions),
meaning that the model sees a pattern in the image. Then,
we estimated the threshold contrast at which the model cor-
rectly detects the pattern 50% of the times. The CSF was
computed as 1/threshold contrast, yielding a sensitivity curve
directly comparable to the human CSF.

Models Tested: We evaluated multiple open-source
CVLMs with equal or fewer than 7B parameters: Llava1.5-7B
(Liu et al., 2023), Blip2-7B (J. Li et al., 2023), InstructBlip-
Vicuna-7B (Liu et al., 2023), and Qwen2.5Vl-3B (Bai et al.,
2025). Each model received identical images and prompts.
Future work will extend this approach to larger models (Chat-
GPT, Gemini-Pro) and to contrastive-trained models (CLIP,
SigLIP) to explore differences in visual sensitivity across ar-
chitectures, training goals and model sizes.

Results
Figure 2 compares the contrast sensitivity functions (CSFs)
of the analyzed chat-vision-language models, averaged over
25 different prompts, to the human CSF. The human CSF ex-
hibits a characteristic bandpass shape, peaking around 4–6
cycles per degree (cpd) before declining at higher frequen-
cies. LLaVA-1.5-7B is the model that most closely resem-
bles human CSF in overall sensitivity, while Qwen2.5VL-3B,
despite lower sensitivity, is the one that better captures the
human CSF shape. Blip2-7B and InstructBlip-Vicuna-7B ob-
tained much flatter CSFs, lacking clear peaks. In general,
most models showed higher sensitivity than humans at high
spatial frequencies, indicating a focus on fine details.

Figure 2: CSFs results: Human and Chat-VL-model contrast
sensitivities averaged over the 25 prompts.

The qualitative observations are confirmed by the metrics
in Table 1. Qwen2.5VL-3B has the highest shape Pearson
correlation with the human CSF, while LLaVA-1.5-7B has the
lowest RMSE, indicating close absolute values. Blip2-7B and
InstructBlip-Vicuna-7B performed poorly in both shape and
magnitude alignment.

Model Pρ ↑ RMSE ↓
Llava1.5-7B 0.70 50.4

Blip2-7B 0.20 90.8
InstructBlip-Vicuna-7B -0.46 105.8

Qwen2.5VL-3B 0.85 97.6

Table 1: CSF similarity metrics across models: Pearson
correlation and RMSE between the human CSF and the dif-
ferent Chat-VL-model CSFs averaged over the 25 prompts.

The earlier results averaged model CSFs across 25
prompts, but this overlooks prompt variability, which can signif-
icantly affect responses. A more accurate analysis computes
correlation and RMSE for each prompt-specific CSF, then re-
ports the mean and standard deviation to assess both human
CSF alignment and response stability.

Table 2 shows these results. Regarding correlation, Blip2-
7B and InstructBlip-Vicuna-7B have weak positive mean cor-
relations, suggesting limited alignment with human trends.
LLaVA-1.5-7B and Qwen2.5VL-3B show negative correla-
tions, indicating deviation from human CSF, though they are
more consistent across prompts, as reflected by lower stan-
dard deviations. Blip2-7B, by contrast, shows high variability,
suggesting strong prompt dependence. RMSE results follow
a similar pattern. InstructBlip-Vicuna-7B and Qwen2.5VL-3B
have the lowest RMSEs, indicating values closer to human
perception. LLaVA-1.5-7B has the highest RMSE, while Blip2-
7B again shows the most variability. Overall, while some mod-
els may resemble human CSFs in certain cases, their strong
dependence on prompt phrasing raises concerns about con-
sistency and robustness.

Model Pρ,mean Pρ,std RMSEmean RMSEstd
Llava1.5-7B -0.24 0.16 117.3 98.8

Blip2-7B 0.22 0.40 68.9 111.5
InstructBlip-7B 0.22 0.32 59.7 77.4
Qwen2.5VL-3B -0.24 0.24 45.7 93.8

Table 2: CSF similarity metrics across models and prompt
sets: Mean and standard deviation (std) of the Pearson corre-
lation and RMSE between each model’s CSF and the human
CSF across 25 distinct prompts.

Conclusions
In this work we introduce a novel approach for evaluating con-
trast sensitivity in chat-based vision-language models using
a psychophysics-inspired framework. Our findings reveal that
while models demonstrate varying degrees of sensitivity to vi-
sual contrast, none fully replicate the shape or stability of the
human contrast sensitivity function (CSF).

Between the analyzed models, LLaVA-1.5-7B exhibits high
overall sensitivity but shows significant prompt dependency,
leading to inconsistent estimates. Qwen2.5VL-3B, although
less sensitive in absolute terms, displays more stable CSF
trends across different prompts. Blip2-7B and InstructBlip-
Vicuna-7B, on the other hand, struggle with both shape align-
ment and stability, highlighting limitations in how these models
process fundamental perceptual information. Prompt variabil-
ity plays a crucial role in model performance, especially for
models like Blip2-7B whose responses fluctuate widely with
minor changes in phrasing. This sensitivity raises concerns
about their internal consistency and reliability for tasks requir-
ing fine-grained visual understanding.

Overall, this work offers a foundation for systematically
probing low-level visual properties in multimodal models. It
underscores the importance of developing prompt-invariant
evaluation techniques and encourages further research into



aligning model perception with human vision—not only in task
performance but also in fundamental perceptual processes.
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