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Abstract
Vision Transformers (ViTs) achieve remarkable perfor-
mance in image recognition tasks, yet their alignment
with human perception remains largely unexplored. This
study systematically analyzes how model size, dataset
size, data augmentation and regularization impact ViT
perceptual alignment with human judgments on the
TID2013 dataset. Our findings confirm that larger models
exhibit lower perceptual alignment, consistent with pre-
vious works. Increasing dataset diversity has a minimal
impact, but exposing models to the same images more
times reduces alignment. Stronger data augmentation
and regularization further decrease alignment, especially
in models exposed to repeated training cycles. These
results highlight a trade-off between model complexity,
training strategies, and alignment with human percep-
tion, raising important considerations for applications re-
quiring human-like visual understanding.
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Introduction
Vision Transformers (ViTs) have demonstrated excep-
tional performance across diverse image recognition tasks
(Dosovitskiy et al., 2021). However, while these models
achieve high accuracy on benchmark datasets, their align-
ment with human perception remains an open question. Un-
derstanding how architecture and training strategies influ-
ence perceptual alignment is crucial for building more in-
terpretable, robust, capable-to-generalize and human-aligned
models. This could benefit applications such as image quality
assessment, content generation, and explainable AI.

Prior research has shown that convolutional neural net-
works (CNNs) can exhibit varying degrees of perceptual align-
ment based on their architecture and training settings (Zhang
et al., 2018; Kumar et al., 2022; Hernández-Cámara et al.,
2025). However, ViTs rely on self-attention mechanisms, en-
abling global context modeling that may alter their perceptual
representations (Raghu et al., 2021). While some studies
have examined perceptual alignment in CNNs, a systematic
analysis of ViTs under different training conditions is still lim-
ited (Kumar et al., 2022; Hernández-Cámara et al., 2024).

In this study, we investigate how key factors such as model
size, dataset size, data augmentation, and regularization in-
fluence the perceptual alignment of ViTs. Using a collection
of pretrained ViTs, we evaluate their outputs on the TID2013
dataset (Ponomarenko et al., 2015), a widely used benchmark
that captures human visual quality assessments. It contains

a diverse set of images with controlled distortions, making it
an effective tool for measuring perceptual similarity between
human observers and computational models.

Methods
Models and Factors
We analyze a collection of ViTs trained for image classification
(Steiner et al., 2021). This collection includes over 50,000 pre-
trained models trained under different configurations, allowing
us to systematically explore how variations in architecture and
training parameters affect perceptual alignment. Particularly,
we focus on the factors varied in this collection of models, such
as the model size (small vs. large architecture), the dataset
size (number of unique images used during training), sam-
ples seen (how many times each image is seen during the
training), intensity of data augmentation (strength of augmen-
tations applied) and regularization (effect of techniques such
as dropout and stochastic depth).

Perceptual Alignment Evaluation
We evaluate perceptual alignment using the TID2013 dataset
(Ponomarenko et al., 2015). It contains 25 original images
and 24 distortions at five intensity levels, each pair rated by
human observers with the mean opinion score (MOS) reflect-
ing perceptual quality, i.e. how much humans see the differ-
ence for each particular image pair. For each image pair, we
first pass both the original and distorted images through the
ViT and extract the encoder outputs for each image. Then,
we compute the Euclidean distance between the encoder out-
puts of the original and distorted images, which represents the
model’s perceptual dissimilarity. We compute the Spearman
correlation between the model distances and the human MOS
across all image pairs, a quantitative measure of the model’s
alignment with human perceptual judgments. By applying this
procedure across multiple ViTs with varying training factors,
we systematically assess how these factors influence the per-
ceptual alignment of Vision Transformers.

Results
Model Size and Dataset Size: As shown in Figure 1, larger
models exhibit lower perceptual alignment across all dataset
configurations. Additionally, increasing dataset diversity ( from
1.3M to 13M unique images) has minimal impact when the
total number of images seen remains constant. This suggests
that model size influences perceptual properties more than
dataset diversity.

Exposure Frequency: Figure 2 illustrates the effect of im-
age exposure frequency, i.e. the number of times each image



Figure 1: ViT perceptual alignment on TID2013 depending on
model size (colors) and the dataset size for a fixed compute,
i.e. same quantity of images seen.

Figure 2: ViT perceptual alignment with TID2013 depending
on model size (colors) and the number of images seen for a
fixed dataset size, i.e. same number of unique images.

is seen during the training. Models that see each image more
times during training show lower perceptual alignment, i.e. the
models suffer from overfitting. This effect is most pronounced
in the larger models (24-layer ViT), aligning with prior findings
that prolonged training and, therefore, more accuracy on the
training objective can reduce alignment with human percep-
tion (Gomez-Villa et al., 2020; Li et al., 2022; Kumar et al.,
2022; Hernández-Cámara et al., 2025).

Data Augmentation and Regularization: Figure 3 shows
that stronger data augmentation consistently decreases per-
ceptual alignment for all model sizes. Similarly, Figure 4
demonstrates that regularization also reduces alignment, par-
ticularly for the models with extensive training, i.e. the ones
that have seen each image more times. This suggests that
techniques commonly used to enhance model generalization
may inadvertently push ViTs further from human-like percep-
tual representations.

Finally, figure 4 shows how regularization changes the ViT
perceptual alignment. It shows that regularization also re-
sults in less perceptually aligned models. The models are
less aligned for the models trained during more epochs and
therefore more overfitted.

Conclusions
This study reveals a trade-off between optimizing ViTs for
classification performance and maintaining perceptual align-
ment with humans. Factors that typically improve classifi-
cation accuracy—larger models, extended training, stronger

Figure 3: ViT perceptual alignment with TID2013 depending
on the data augmentation (x-axis).

Figure 4: ViT perceptual alignment with TID2013 depending
on the regularization (x-axis).

data augmentation, and regularization—consistently reduce
alignment with human perception. Consistent with previous
works, we show in Figure 5 that more capable models in terms
of their accuracy in classification are consistently less human-
like (Gomez-Villa et al., 2020; Li et al., 2022; Kumar et al.,
2022; Hernández-Cámara et al., 2025). These findings sug-
gest that optimizing ViTs purely for task performance may lead
to representations that diverge from human visual processing.

Future research should explore ways to balance perceptual
alignment and task optimization, particularly for applications
requiring human-like interpretation, such as medical imaging,
artistic rendering, and explainable AI systems. Understanding
how to train AI models that ”see” more like humans could lead
to more intuitive and reliable machine vision applications.
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Hernández-Cámara, P., et al. (2025). Dissecting the effective-
ness of deep features as metric of perceptual image quality.
Neural Networks, 185, 107189.

Kumar, M., et al. (2022). Do better imagenet classifiers assess
perceptual similarity better? arXiv:2203.04946.

Li, Q., et al. (2022). Contrast sensitivity functions in autoen-
coders. Journal of Vision, 22(6), 8–8.

Ponomarenko, N., et al. (2015). Image database tid2013:
Peculiarities, results and perspectives. Signal processing:
Image communication, 30, 57–77.

Raghu, M., et al. (2021). Do vision transformers see like con-
volutional neural networks? Neurips, 34, 12116–12128.

Steiner, A., et al. (2021). How to train your vit? data,
augmentation, and regularization in vision transformers.
arXiv:2106.10270.

Zhang, R., et al. (2018). The unreasonable effectiveness of
deep features as a perceptual metric. In Cvpr (pp. 586–
595).


