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Abstract

A number of scientists suggested that human visual per-
ception may emerge from image statistics, shaping effi-
cient neural representations in early vision. In this work,
a bio-inspired architecture that can accommodate several
known facts in the retina-V1 cortex, the PerceptNet, has
been end-to-end optimized for different tasks related to
image reconstruction: autoencoding, denoising, deblur-
ring, and sparsity regularization. Our results show that
the encoder stage (V1-like layer) consistently exhibits the
highest correlation with human perceptual judgments on
image distortion despite not using perceptual information
in the initialization or training. This alighment exhibits
an optimum for moderate noise, blur and sparsity. These
findings suggest that the visual system may be tuned to
remove those particular levels of distortion with that level
of sparsity and that biologically inspired models can learn
perceptual metrics without human supervision.

Keywords: Perceptual Representation; Visual Perception; Bio-
Inspired Models; Self-Supervised Learning; Autoencoder;

Introduction

On the one hand, following the classical Efficient Coding Hy-
pothesis (H. B. Barlow et al., 1961; H. Barlow, 2001), many
researchers have shown that certain behaviors of biological vi-
sion systems can be derived from the statistical regularities of
natural images. Examples include: (1) color coding based on
one achromatic and two chromatic broad-band spectral sen-
sitivities (Buchsbaum & Gottschalk, 1983) and their associ-
ated nonlinearities (von der Twer & MacLeod, 2001; Laparra
et al., 2012); (2) the emergence of achromatic and spatio-
chromatic frequency analyzers (Olshausen & Field, 1996), in-
cluding their bandwidth (Atick, Li, & Redlich, 1992), adaptation
(Gutmann et al., 2014), and nonlinear responses (Schwartz
& Simoncelli, 2001). On the other hand, autoencoders also
capture the statistics of the images they are trained to recon-
struct. Recent works have shown that denoising and deblur-
ring autoencoders can reproduce the human contrast sensi-
tivity function (Li et al., 2022) and exhibit humanlike color illu-
sions (Gomez-Villa et al., 2020). Similarly, compression au-
toencoders develop non-Euclidean metrics aligned with hu-
man judgments of image distortion (Hepburn et al., 2022),
while networks trained on low- and mid-level vision tasks also
induce perceptually aligned distortion metrics (Kumar et al.,
2022; Hernandez-Camara et al., 2025).

These findings raise the question: Can biologically inspired
architectures of the early visual system, such as PerceptNet

(Hepburn et al., 2020), learn perceptual distances without ex-
plicit perceptual supervision? In this work, we train Percept-
Net on tasks including image reconstruction, denoising, de-
blurring, and sparsity regularization. We then analyze how
these objectives influence the human alignment with percep-
tual judgments. Our results show that the strongest correlation
with human evaluations arises at the V1 stage of PerceptNet.
Notably, this alignment displays optimal values for moderate
noise, blur, and sparsity levels.

By demonstrating that autoencoders can learn human-like
perceptual properties, our study offers insights into both com-
putational and neurobiological mechanisms of vision. Further-
more, it suggests that bio-inspired architectures may enable
perceptual metrics that generalize across tasks without requir-
ing perceptual human-labeled data.

Methods

We base our approach on PerceptNet, a biologically inspired
model designed to mimic the visual pathway up to the primary
visual cortex (Hepburn et al., 2020). To train the model in
a self-supervised fashion, we implement an autoencoder ar-
chitecture by using PerceptNet as an encoder and appending
a PerceptNet inverse version as the decoder. This inverse
model mirrors the original PerceptNet but replaces pooling
operations with upsampling and divisive normalization with
inverse divisive normalization, which performs multiplicative
scaling instead of division. Both the encoder and decoder pa-
rameters are learned jointly during training.

We use approximately 200,000 natural images sampled
from the ImageNet dataset to train the models. Each model is
trained until convergence, with hyper-parameters adjusted for
each objective to optimize performance. We train the model
with four different objectives:

* Image reconstruction: Model trained to minimize the mean
squared error (MSE) between input and reconstructed im-
ages.

* Denoising: Model trained to reconstruct the clean version
of Gaussian noise-corrupted images, parameterized by the
noise standard deviation (o).

* Deblurring: Model trained to reconstruct the clean version
of blurred images (by convolving them with a Gaussian ker-
nel), parameterized by the standard deviation of the convo-
lution kernel (o).

* Sparsity: Model trained to reconstruct images while encour-
aging sparse representations by adding an L; penalty on
the mean absolute value of the encoder activations. The
sparsity is parameterized by scaling the L1 penalty with a
hyperparameter (A).
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Figure 1: TID2013 Spearman correlation at the end of the encoder (V1-like layer) as a function of the different training parameters

for denoising (left), deblurring (center) and sparsity (right).
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Figure 2: TID2013 Spearman correlation layer-by-layer when
training the model to reconstruct natural images.

To evaluate perceptual alignment, we compute the cor-
relation between differences in activations at each model
layer and human Mean Opinion Score (MOS) from TID2013,
a standard image quality assessment (IQA) database
(Ponomarenko et al., 2015). This allows us to analyze how the
different objectives affect the emergence of human-aligned
perceptual representations at the different layers.

Results

We first examine how the correlation with human MOS varies
across the model’s layers under the simpler image reconstruc-
tion objective. Figure 2 reveals a clear peak in correlation in
the final layers of the encoder, corresponding to the V1-like
stage of PerceptNet.

We then analyze the effect of different training objectives by
focusing on the encoder output. Figure 1 left shows how the
correlation increases with noise level, reaching a maximum at
approximately o = 0.1, after which it declines. This suggests
that moderate noise levels improve perceptual alignment, but
excessive noise reduces it.

Figure 1 center shows that a small blur with ¢ < 1 pro-
duces an increase in correlation, but a stronger blur reduces
it. This suggests that the model benefits from learning to re-
verse slight degradations, but heavy blur impairs its ability to
align with human perception.

Finally, figure 1 right shows that although sparsity has less
effect than the previous goals, a moderate sparsity improves
correlation, but higher levels (A > 0.1) reduce it. This indicates
a trade-off where sparsity enhances representations up to a
point but reduces performance if over-enforced.

These findings suggest that perception emerges from effi-

cient coding strategies, where the brain balances information
preservation with noise suppression. The non-monotonic ef-
fects indicate that perception is optimized through an interme-
diate level of regularization rather than extreme constraints.

Conclusions

Our study demonstrates that biologically inspired models can
develop perceptual representations aligned with human vi-
sion through self-supervised learning alone, without percep-
tual supervision. Specifically, we show that PerceptNet, when
trained as an autoencoder with appropriate regularization, ex-
hibits emergent perceptual properties that strongly correlate
with human judgments.

A key finding is that the highest alignment with human per-
ception consistently arises at the encoder stage, which cor-
responds to V1 processing. This suggests that early visual
representations in the brain may naturally reflect the statistical
properties of the environment when optimized for reconstruc-
tion. Interestingly, moderate levels of noise, blur, and spar-
sity enhance this alignment, while excessive regularization re-
duces it. These results support that the visual system may
be tuned to remove those particular levels of distortion with
that level of sparsity and that biologically inspired models can
learn perceptual metrics without human supervision.

Our findings complement and extend recent work showing
that self-supervised models—such as denoising-deblurring
autoencoders that replicate the human contrast sensitivity
function (Li et al., 2022) or compression autoencoders that
learn human-aligned non-Euclidean metrics (Hepburn et al.,
2022)—can capture perceptual properties without explicit su-
pervision. Moreover, our analysis of task-dependent align-
ment patterns resonates with studies demonstrating that net-
works trained for low- and mid-level vision tasks can in-
duce humanlike distortion metrics (Hernandez-Camara et al.,
2025).

By showing that biologically grounded architectures like
PerceptNet can achieve similar alignment, our work provides
further insight into the computational principles that may un-
derlie biological vision. It also suggests that bio-inspired per-
ceptual metrics could generalize across tasks and datasets,
offering robust, interpretable models of perception without re-
liance on human annotations.
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