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Abstract
Human learning in a dynamic and stochastic environment
relies on computational variables such as confidence and
surprise. If the learning process is shaped by neuro-
modulation, then the spatial distribution of receptors and
transporters across the brain could put constraints on
the spatial distribution of learning-related neural activ-
ity. Here, using fMRI data from four probabilistic learning
studies and a Bayesian ideal observer model, we reveal
a strong spatial invariance across tasks for the functional
correlates of confidence, and to a lesser extent, surprise.
Using 20 PET receptor/transporter density maps, we then
show that this invariance could be partly explained by
the chemoarchitecture of the cortex. We identified multi-
ple receptors and transporters whose distribution aligned
with the spatial distribution of neural activity in the cor-
tex. While many of these receptors/transporters are in
line with previous proposals of neuromodulation of learn-
ing, the results also revealed novel associations that can
be targeted in experimental studies.
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Introduction
In uncertain and dynamic environments, we continuously ad-
just our probabilistic expectations based on new observa-
tions, distinguishing between random fluctuations and mean-
ingful changes—an adaptive process well-characterized by
Bayesian inference. This framework suggests that surpris-
ing events, particularly those that diverge from confident pre-
dictions, should drive stronger learning updates, a principle
reflected in both human behavior and neural data (Peterson
& Beach, 1967; Gallistel et al., 2014; McGuire et al., 2014;
Meyniel, 2020). Neuromodulators such as dopamine, sero-
tonin, acetylcholine, and norepinephrine have been proposed
to mediate this adaptive learning, influencing neural circuits by
altering synaptic strength, excitability, and network dynamics
(Doya, 2002; Yu & Dayan, 2005; Celada et al., 2013). These
effects depend on the diverse characteristics and distribu-
tion of neurotransmitter receptors and transporters across the
brain (Goulas et al., 2021; Shine, 2019), possibly influencing
how learning signals like confidence and surprise are repre-
sented. This study tests whether the topography of learning-
related neural activity is constrained by the spatial distribution
of receptors, using fMRI and PET data across various learning
tasks to assess (1) the consistency of learning-related brain
activity, (2) its relationship to receptor density, and (3) the iden-

tification of neuromodulators specifically linked to confidence
and surprise.

Methods
To test whether the brain’s response to learning under uncer-
tainty exhibits a consistent spatial pattern across tasks—and
whether this relates to neurotransmitter receptor distribu-
tions—we generated effect maps for surprise and confidence
from four fMRI datasets spanning diverse tasks and modali-
ties. These included three probability learning tasks (Studies
1–3) and one reward-based decision task (Study 4), all involv-
ing unpredictable changes in latent variables (e.g., probabil-
ities, rewards) to drive adaptive learning. All data were pre-
processed with a unified pipeline, and neural responses were
modeled using a general linear model (GLM) with trial-by-trial
regressors for surprise and confidence, derived from an ideal
Bayesian observer model.

To assess spatial invariance of confidence and surprise rep-
resentations, we computed group-level effect maps for each
variable per study, examined the extend of overlap between
maps, and correlated each map with the same latent variable
from other studies. Correlations were tested for significance
against spin-based null distributions (e.g., Alexander-Bloch et
al., 2018; Blaser & Fryzlewicz, 2016; Markello & Misic, 2021).

Figure 1: Analysis framework. Do fMRI effects of compu-
tational learning-related variables align with cortical recep-
tor/transporter distributions?

We next asked whether this spatial distribution could be
predicted from cortical neurotransmitter receptor distributions
(Figure 1). We used PET-derived density maps for 20 re-
ceptors/transmitters across 10 neurotransmitter systems from
Hansen et al. (2022), including an α2 receptor map from Lau-
rencin et al. (2023). For each subject and task, we used cross-
validated multiple linear regression to predict fMRI effect maps
from receptor densities. Model performance was assessed
against spin-based null model distributions.



Figure 2: Predicting fMRI effects from receptor distributions. Dominance analysis revealed the contribution of each receptor
and transporter to the model fit. The percent contribution of each receptor reflects the variables dominance normalized by the
model fit (R2. The top row in A (confidence) and B (surprise) depicts the mean percent contribution across all subjects from
all probability studies (studies 1-3). Error bars reflect the SEM. The signs across the bottom of the bar plot indicate consistent
signs and significance across subjects in each study in the full regression model. The heat maps illustrate the dominance results
by study. C: Example receptor density distributions across the cortex for MOR and NET. D: Dominance results for surprise and
confidence for the reward learning study (Study 4).

To identify key contributors, we ran a dominance analysis
which reveals the contribution of each receptor/transporter to
model fit. Dominance scores were normalized by total model
fit for comparison across tasks and variables.

Results
We observed consistent spatial patterns for both confidence
and surprise effects across studies (all correlations p<0.001).
Confidence-related effects overlapped across all four tasks,
especially in the posterior intraparietal sulcus, precuneus, and
anterior insula. Surprise-related activations also showed over-
lap across the probability learning studies, particularly in the
right precentral sulcus and inferior frontal gyrus.

Next, we tested whether the spatial distribution of neuro-
modulatory receptors could account for the invariant patterns
in fMRI effect maps. Cross-validated models using receptor
density distributions significantly outperformed null models (all
p<0.001) in all study-variable combinations except surprise in
Study 2. Focusing on individual receptor contributions (Fig-
ure 2), dominance analysis revealed that the spatial distribu-
tion of the mu-opioid receptor (MOR) consistently explained
the largest share of variance in confidence-related brain ef-
fects across probability learning tasks. MOR was significant
in all three studies, with a negative coefficient—indicating in-
creased activation in areas of low MOR density under high
uncertainty. Other receptors (e.g., 5-HT1B, A4B2, CB1) con-
tributed modestly. For surprise, the norepinephrine trans-
porter (NET) showed the strongest and most consistent contri-
bution across probability learning studies, particularly in Stud-
ies 1 and 3. Areas with high NET density showed greater ac-
tivity in response to unexpected outcomes. In contrast, in the
reward learning task (Study 4), the contributions of MOR and
NET flipped: surprise-related activations emerged in regions

with low NET and high MOR density.

Discussion
Our results show that cortical representations of confidence
are highly consistent across probabilistic learning tasks, de-
spite differences in sensory modality (visual, auditory), sta-
tistical structure (Bernoulli, transitions), and even task type,
extending to reward learning. This invariance is partly ex-
plained by receptor distributions. Across probability learning
tasks, confidence-related activity aligned with several neuro-
modulator systems, notably 5-HT1b (serotonin), A4B2 (acetyl-
choline), and unexpectedly, µ-opioid receptor (MOR). MOR’s
strong and consistent contribution may reflect its modulation
of the locus coeruleus and dopamine system (Curtis et al.,
2001; Gysling & Wang, 1983).

Surprise-related effects were also partly consistent across
probability tasks, though more variable and modality-
dependent. The strongest correlation across studies was with
norepinephrine transporter (NET) density, supporting its role
in learning under uncertainty (Yu & Dayan, 2005). Associa-
tions with serotonin (5-HT6) and dopamine (D1, D2) receptors
also align with existing models of neuromodulation of learning
(Doya, 2002). In contrast, surprise effects in the reward task
showed limited overlap with other tasks and different receptor
contributions, likely due to differences in task demands and
the reduced relevance of unsigned surprise.

Together, these findings suggest that cortical effects re-
lated to computational learning variables— confidence and
surprise—show robust cross-task similarity, partly shaped by
receptor distributions. Some receptor associations support
previous hypothesis, while others suggest novel neuromod-
ulations of learning.
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