
How neurocomputational mechanisms of number perception  
adapt to prior expectations 

 

Gilles de Hollander (gilles.de.hollander@gmail.com)  
Zurich Center for Neuroeconomics, University of Zurich, Switzerland 

 
Arthur Prat-Carrabin (arthurpc@g.harvard.edu) 

Department of Psychology and Center for Brain Science, Harvard University, USA 
 

Saurabh Bedi (saurabh.bedi@econ.uzh.ch) 
Zurich Center for Neuroeconomics, University of Zurich, Switzerland 

 
Samuel J. Gershman (gershman@fas.harvard.edu) 

Department of Psychology and Center for Brain Science, Harvard University, USA 
 

Christian C. Ruff (christian.ruff@econ.uzh.ch) 
Zurich Center for Neuroeconomics, University of Zurich, Switzerland 

 



Abstract 
Efficient coding offers a normative theory for how 
the brain should allocate resources to represent the 
world, and growing evidence demonstrates that 
perceptual systems of humans and animals adhere 
to its principles. However, most existing studies 
have focused on simple stimuli like Gabor patches 
and have assumed relatively fixed encoding 
functions. Here we demonstrate that cognitive and 
neural representations of numerosity - a higher-level 
cognitive function - can rapidly adapt to context in 
ways consistent with efficient coding. Using fMRI 
(n=39), we show that neural populations tuned to 
specific numerosities shift their tuning with context, 
aligning with with a Thurstonian perceptual model in 
which part of an unconstrained objective stimulus 
space is linearly mapped to a constrained 
representational space. Our findings demonstrate 
how the brain adapts to changing conditions and 
how neurocomputational modeling of fMRI data can 
deepen our understanding of the neural 
representations driving behavior. 
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Introduction 
Because of its limited capacity for storing and processing 
information, the brain constantly needs to adapt the way 
it represents the outside world. Intuitively, it should put 
more resources into representing those stimulus 
features –and parts of stimulus feature space– that are 
more likely and/or relevant to the task at hand. A formal, 
normative framework for this intuition is offered by 
efficient coding theory (Barlow, 1961). Empirical 
evidence for efficient coding is rapidly growing and can 
explain several puzzling behavioral biases (Wei and 
Stocker, 2015; Prat-Carrabin and Woodford, 2021, 
2022). Moreover, perceptual adaptations to the 
environment are evident in neural processing in early 
sensory areas, as confirmed with electrophysiological 
recordings in animals (Grujic et al., 2022). 

Behavioral hallmarks of efficient coding are 
evident not just for simple stimuli but also more abstract 
stimulus features, such as numerosity (Prat-Carrabin 
and Woodford, 2022). Also for these features, behavioral 
data suggest that neural coding can rapidly adapt to 

changing environmental priors (Prat-Carrabin and 
Woodford, 2024). However, the neural mechanisms 
underlying these rapid reconfigurations of numerosity 
representations are not well-understood. 

 

 

Figure 1. A) Overview of task design. B) Mean error for 
different numerosities and conditions (shaded area is 
S.E.M. C) Average standard deviation of responses for 
same numerosities. 

Here, we illuminate the neural mechanisms by 
which the brain flexibly adapts its magnitude 
representations to task demands, by leveraging 
neurocomputational models of numerical representations 
in the parietal lobe, namely numerical population 
receptive field models (nPRFs; Harvey et al., 2013). We 
hypothesized that just as how visuospatial tuning of 
visual receptive fields in visual areas can shift their 
tuning towards covertly attended stimuli (Olshausen et 
al., 1993; Klein et al., 2014), neural populations in the 
intraparietal sulcus (IPS) tuned to specific numerosities 
might shift their preferred numerosity along the number 
line, to linearly map the currently relevant parts of 
stimulus space to the full internal representational space 
(Thurstone, 1927), thereby maximizing representational 
efficiency 

Results 
Thirty-nine participants attended two scanning sessions 
(3T fMRI at 2.5mm resolution) and were instructed to 
estimate the number of dots in a stimulus area, under 
two conditions: one with the number of dots always 
ranging from 10 to 25 (‘narrow condition’), and another 
from 10 to 40 (‘wide condition’; see Fig. 1A). Participants 
received extensive instructions and practiced with 
feedback at the start of each block. 
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We tested for behavioral signs of efficient 
remapping, expecting greater variability and larger 
biases for perception of the same numbers when viewed 
in the context with the large number range. Indeed, for 
numerosities 10-25, participants made larger errors and 
showed increased variability in the wide condition 
compared to the narrow condition (errors: t(38)=4.12, 
p<0.001; variability: t(38)=7.27, p<0.0001; Fig 1B, 1C). 
We fitted a numerical population receptive field with 
log-Gaussian receptive fields assuming separate 𝜇 
(preferred numerosity)-parameters for the narrow and 
wide conditions, keeping RF dispersion, amplitude and 
baseline constant. We replicated earlier work, with 
robust non-monotonic tuning to numerosities around the 
intraparietal sulcus and postcentral gyrus, in particular in 
the right hemisphere (see Fig. 2). 

 
Figure 2. Example nPRF fits for two representative 
subjects. Note how small patches of cortex are robustly 
tuned to specific numerosities (left panels) and how both 
subjects show a consistent shift in tuning from the 
narrow to the wide condition. 
To formally test whether numerical tuning shifted 
between conditions, we compared four models using 
cross-validated voxelwise R² values (cvR²) within the 
right IPS. The no-shift model assumed constant 
parameters across conditions. The free shift model 
allowed 𝜇 to vary between conditions and was 
independently fit across voxels. The efficient model 
assumed that the nRFs shifted linearly with slope 2, 
aligning with the corresponding quantiles of the prior 
distribution (so 𝜇narrow = 𝜇wide when 𝜇narrow = 10). Similarly, 
the free slope model forced all voxels to have the same 
slope between 𝜇narrow and 𝜇wide, intersecting at 10, but this 
slope was a free hyperparameter (see Fig. 3A). 

 
Figure 3. A) 2D histograms of estimated preferred 
numerosities for narrow and wide conditions, for the four 
distinct models. B) Proportion of voxels with a cvR2>0.0 
within rIPS for the four models. *** p<0.001 C) 
Distribution of estimated slope 𝜇wide ~ 𝜇narrow. 

The number of voxels that showed cvR2 higher 
than 0 was significantly larger for the efficient 
slope-model compared to all other models (paired t-test, 
all p<0.0001; Fig 2B). The free slope-model performed 
2nd best. Moreover, the estimated slopes of the free 
slope-model were significantly larger than 1 (t(38)=5.42, 
p<0.001)  and not significantly different from 2 
(t(38)=5.42, p=0.142; BF01=2.07). 

Conclusion 

Our behavioral and neurocomputational findings show 
that the human brain can rapidly adapt the processes 
underlying number perception to changing contexts, by 
remapping numerical tuning functions in parietal cortex. 
This remapping provides a concrete neurocomputational 
mechanism bridging a century-old psychophysics model 
(Thurstone, 1927) and neurocomputational models of 
visual attention (Olshausen et al., 1993) and efficient 
coding (Barlow, 1961). In future work, we will further 
integrate these cognitive and neurocomputational 
models. 
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