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Abstract:

Interaction with our continuously changing environment 

relies on anticipating timing of events, enhancing 

information processing efficiency. Abundant research 

has investigated temporal prediction in deterministic 

environments such as isochronous rhythms, where the 

presumed mechanism is Oscillatory Entrainment (OE) to 

external rhythms. However, in everyday life, continuous 

streams lack fully-deterministic temporal regularities. 

Previous research of temporal prediction in uncertain 

environments has focused on isolated intervals, 

suggesting a Distributional-Learning (DL) model. 

However, in non-deterministic streams, if and under 

which conditions either of these mechanisms drives 

prediction is unclear. To address this, we combined 

computational modeling of the two mechanisms (OE and 

DL) and human behavioral experiments. We found that 

while models are affected differently by the degree of 

variability in the environment, they lead to more 

overlapping predictions in lower degrees of variability. 

Next, we used the models generatively to create streams 

with differential temporal predictions by these two 

mechanisms, and presented targets at either predicted 

timepoint to participants conducting a speeded response 

task. Participants’ behavior followed OE predictions in 

environments with relatively lower degrees of variability 

to which they were sequentially exposed. Overall, these 

results highlight the inherent differences between OE 

and DL mechanisms in dealing with uncertainty, and 

reveal the flexibility of OE in adapting to partial 

irregularities, and its independence from DL. 
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Introduction 

The goal of this study is to unravel the computational 

mechanisms of temporal prediction in continuous non-

deterministic streams, in which the inter-stimulus intervals 

have different levels of variance. For this, we aimed to 

examine the validity of different computational models (i.e. 

OE and DL models) by generatively testing their predictions 

against human behavioral data. OE model is based on 

synchronization of endogenous brain oscillations to external 

rhythm by aligning their optimal phase to the rhythmic 

stimuli (Large and Snyder, 2009). DL models on the other 

hand have been proposed as a probabilistic representation of 

the environment by sequential updating when exposed to 

isolated intervals (Visalli et al., 2019). To control for the 

hazard effect (Drazin, 1961), we also presented targets that 

are later than either of the models’ predictions. 

Methods 

Computational Modelling and Simulations 
We developed and implemented two computational models, 

Oscillatory Entrainment (Large and Snyder, 2009; Eq. 1) 

and Conjugate Prior Sequential Bayesian Updating model 

(Murphy, 2007; Eq. 2), to see how aperiodic streams may 

lead to temporal prediction of subsequent events and hence 

proactive preparation. 

 

Eq. 1.   Eq. 2. 

 

 

 
To study the behavior of the models in different levels of 

stream inter-stimulus interval (ISI) variability, we used a 

simulation approach. We created a large number of streams 

with randomly ordered ISIs generated from a normal 

distribution with specific mean and standard deviation, fed 

each stream to the two models, and tracked their prediction 

dynamics. We asked how and under what conditions the 

predictions of these two mechanisms differentiate. 

Finally, used the models antecedently to select streams for 

behavioral experiments. Therefore, we calculated the 

predictions of the models on the simulated streams, and 

selected the streams with the maximum dissociation of 

predictions of the two models and the desired level of phase 

coherency of the oscillator model. 

 

Behavioral Experiment 
Paradigm  Healthy participants participated in two 

different experiments (n1 = 20, n2 = 25). Participants viewed 

streams of visual stimuli with different ISI variability: 0% 

(isochronous), 25% (low jitter), 50% (high jitter). They 

provided speeded responses to a target presented for a 

specific stream each time at a different time point which 

could be the time predicted by the OE model, the DL model, 

the midpoint between their predictions, or a late target to 

measure the hazard effect. 

 

Results 

Simulation Results 

For the OE model, we calculated the increase in Inter-Trial 

Phase Coherency (ITPC) for different shuffles (randomly-

ordered ISIs) of the streams in different levels of ISI 

variabilities. For DL model, we looked into the change in the 

level of the posterior distribution variance. We found that 

while the prediction uncertainty of the DL model (posterior 



variance) is correlated with ISI variability in a strictly 

positive way, the correlation of prediction uncertainty in OE 

model (ITPC change) with ISI variability is nonlinear 

(Fig.1.). 

 

Figure 1. Distribution of all shuffles of ISIs with the same 

mean (800ms) and different levels of standard deviation 

based on the amount of ITPC increase in OE model and 

posterior variance in DL model. 

 

 

Our simulations also showed that the degree of differentiation 

of the predictions of the two models depends on the degree 

of ISI variability (Fig.2.). The lower the jitter the less the 

models are dissociable. 

 

Figure 2. Distribution of all shuffles of ISIs with the same 

mean (800ms) and different levels of standard deviation 

based on differentiation of the prediction of the two models 

and the degree of ITPC increase. 

 

Behavioral Results 

In two different experiments, we presented three types of 

blocks with different level of ISI variability (0%, 25%,50%). 

Chosen streams were presented several times within a block, 

each time followed by a different target position based on the 

prediction of the models. The two experiments were different 

in terms of the order of the blocks, and the number of the 

target positions. 

 

Experiment 1.  All three blocks were sequentially 

ordered. The results showed that behavior of the participants 

follows the prediction of the DL model or hazard function in 

the jittered environments when there are deterministic 

environments (i.e. isochronous blocks) interleaved. 

 

Figure 3. Reaction times of participants for different target 

positions of all the streams in each block in Experiment 1.  

 

Experiment 2.  All isochronous blocks were moved to the 

end. In this experiment we found that participants can use the 

OE model in environments with lower degrees of uncertainty 

when they are not exposed to deterministic environments in 

between. 

 

 

Figure 4. Reaction times of participants for different target 

positions of all the streams in each block in Experiment 2.  

 

Discussion 

In this study we investigated the computational mechanisms 

involved in temporal prediction in non-deterministic 

continuous environments. For this we tested two main 

models of temporal prediction, OE and DL models, in 

streams with different levels of ISI variability. Overall, our 

findings highlight the inherent differences between the two 

mechanisms in handling uncertainty and further proves that 

OE can be engaged in non-deterministic contexts with 

comparably lower variability, while decoupled from 

Bayesian DL. 



References  

Drazin, D. H. (1961). Effects of foreperiod, foreperiod 

variability, and probability of stimulus occurrence on 

simple reaction time. Journal of experimental 

psychology, 62(1), 43. 

Large, E. W., & Snyder, J. S. (2009). Pulse and meter as 

neural resonance. Annals of the New York Academy of 

Sciences, 1169(1), 46-57. 

Murphy, K. P. (2007). Conjugate Bayesian analysis of the 

Gaussian distribution. def, 1(2σ2), 16. 

Visalli, A., Capizzi, M., Ambrosini, E., Mazzonetto, I., & 

Vallesi, A. (2019). Bayesian modeling of temporal 

expectations in the human brain. Neuroimage, 202, 

116097. 

 

 

 

 

 

 


