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Abstract
Foundation models exhibit impressive performance on
tasks that appear to require a wide range of reasoning
abilities. However, they struggle to generalize under dis-
tribution shifts and struggle with reasoning problems that
are trivial for humans. These inconsistencies raise a criti-
cal question: which internal mechanisms, if any, underlie
the successes and failures of these models in reasoning
tasks? While numerous benchmarks have been proposed
to probe reasoning capabilities, our understanding of the
underlying mechanisms responsible for such reasoning-
like behavior remains limited. We hypothesize that dis-
tinct reasoning procedures are supported by specialized,
possibly modular, computational pathways in large-scale
models. Mechanistic interpretability (MI) offers a promis-
ing set of tools to identify and analyze such pathways.
However, most existing work operates in an isolated man-
ner: evaluating a particular model for a particular rea-
soning task, often in a single modality. To address this
gap, we first lay out a high-level taxonomy of reason-
ing processes and then conduct a systematic analysis
of how mechanistic interpretability has been used to in-
vestigate diverse reasoning processes in various founda-
tion models, across three main axes: (i) reasoning type,
(ii) MI technique, and (iii) modality. We aim to develop
a broader understanding of whether (A) different reason-
ing processes share computational mechanisms or are
supported by distinct subsystems, and whether (B) such
mechanisms are consistent across modalities other than
text, such as vision.

Keywords: Mechanistic Interpretability, Reasoning, Foun-
dation models, Multi-modality

Background
Reasoning Processes
Reasoning is broadly understood as the process of infer-
ring novel conclusions based on prior information (Krawczyk,
2017; Russell & Norvig, 2016; Castañeda et al., 2023).
However, there is little consensus, both within and across
fields such as neuroscience, philosophy, and AI, regarding
its precise nature, categories, and underlying mechanisms
(Krawczyk, 2017; Castañeda et al., 2023; Goel et al., 2017).
In our proposal, we adopt a pragmatic approach to catego-
rizing reasoning processes in a way that reflects both how it
has been operationalized in AI via tasks and benchmarks, as
well as the distinctions considered in cognitive neuroscience
(Krawczyk, 2017). We consider the following reasoning pro-
cesses along with their aligned benchmarks;

• Deductive reasoning: Starting from general premises
and inferring specific conclusions that are logically entailed
(Yang et al., 2018; Han et al., 2024). Includes answering
multihop questions (Yang et al., 2018) and some logic puz-
zles (Han et al., 2024).

• Causal reasoning: Establishing cause-and-effect relation-
ships between entities (Krawczyk, 2017; Chi et al., 2024;

Gendron et al., 2024), a process crucial for building coher-
ent world models (Gkountouras et al., 2025).

• Compositional reasoning: Constructing complex struc-
tures from simpler parts or deconstructing them into mean-
ingful components (Hosseini et al., 2024; Li et al., 2024).

• Abductive reasoning: Inferring the best possible conclu-
sion without having all necessary information for an objec-
tively correct answer (Krawczyk, 2017).

• Mathematical and arithmetic reasoning: Involves numer-
ical operations, symbolic manipulation, and formal mathe-
matical problem solving (Cobbe et al., 2021; Mirzadeh et
al., 2024; Hanna et al., 2023).

• Analogical and inductive reasoning: Drawing on relevant
past experiences to solve new problems (Yasunaga et al.,
2024).

• Geometric and spatial reasoning: Understanding
shapes, positions, and spatial relationships between ob-
jects (Kazemi et al., 2024; Shiri et al., 2024).

• Meta-reasoning Reflectively assessing whether the sys-
tem lacks sufficient information (knowledge gap identifica-
tion) or certainty about a given piece of knowledge (Fer-
rando et al., 2024), or detecting fallacies in its own reason-
ing process (Zeng et al., 2024).

We acknowledge the incompleteness of this list and the
inherent difficulty in disentangling overlapping reasoning pro-
cesses—where tasks like world modeling or question answer-
ing often encapsulate causal, commonsense, spatial, and
compositional elements. Nevertheless, this can serve as
a starting point for systematically deconstructing the multi-
faceted mechanism of reasoning in multimodal models.

Mechanistic Interpretability

Mechanistic interpretability (MI) is an emerging field within AI
that aims to identify the computations underlying deep neural
networks (NNs). The main goal is to reverse engineer the be-
havior of NNs by uncovering subnetworks that are responsible
for specific behaviors. Most existing work focuses on narrow
investigations into specific tasks, including reasoning. How-
ever, the ultimate goal is to uncover general principles beyond
empirical findings that are isolated to specific models, modali-
ties or types of reasoning.

We divide the prior work on MI for understanding reasoning
processes into two categories: observation- and intervention-
based techniques, as described in Bereska & Gavves (2024).
Table 1 provides an overview of prior work at the intersection
of MI and reasoning in foundation models.

Observation-based techniques A popular method in MI is
linear probing, which has been used to study the reasoning of
world models (Nanda et al., 2023), LLMs (Hou et al., 2023),
and multi-modal models (Salin et al., 2022; Tao et al., 2024).
More recently, sparse autoencoders (SAEs) have gained trac-
tion within the MI community as a means to decompose a
network into a latent representation with sparse, interpretable
features, with the aim of understanding reasoning processes
(Galichin et al., 2025). Lastly, logit lens is another observa-



MI Technique Methods Reasoning Tasks

Probing Salin et al. (2022), Hou et al. (2023), Nanda et al. (2023),
Tao et al. (2024), Brinkmann et al. (2024)

Mathematical (VL), Language Multi-step, World-Model,
Logical (VL), Symbolic Multi-step

Logit Lens Sakarvadia et al. (2023), Huo et al. (2024), Phukan et al.
(2025)

Multi-hop, QA (V)

SAEs Galichin et al. (2025) Chain-of-thought

Logit Attribution Lieberum et al. (2023) Multiple Choice QA
Attribution Patching Hanna et al. (2024) Mathematical, Compositionality, World-Model
Activation Patching Sakarvadia et al. (2023), Lieberum et al. (2023), Stolfo et

al. (2023), Yu & Ananiadou (2024), Mondorf et al. (2024),
Feng & Steinhardt (2024), Brinkmann et al. (2024), Basu
et al. (2024), Yu & Ananiadou (2025)

Multi-hop, Multiple Choice QA, Mathematical, Logical,
Binding objects, Symbolic Multi-step

Causal Scrubbing Brinkmann et al. (2024) Symbolic Multi-step

Table 1: An overview of recent work in MI which aims to understand the reasoning abilities of foundation models, structured
according to the reasoning tasks and MI techniques used. Each reasoning task involves one or more reasoning processes
described in the previous section. By default, the reasoning tasks are language-based, (V) indicates a vision application, while
(VL) indicates both vision and language.

tional method that can be used to interpret the latent repre-
sentations of a model. Within reasoning tasks, it has been
used to understand the reasoning of language (Sakarvadia et
al., 2023) and visual question answering (QA) tasks (Huo et
al., 2024; Phukan et al., 2025).

Intervention-based techniques Activation patching and
path patching localize where specific input-dependent fea-
tures are encoded within a model. These methods intervene
in latent representations by modifying a subset of activations
or paths, replacing them with those of a separate model pass -
and then measure the causal impact on the output. Activation
patching has been used to study multiple-choice QA reason-
ing (Lieberum et al., 2023; Basu et al., 2024; Yu & Ananiadou,
2025), mathematical (Yu & Ananiadou, 2024) and logical rea-
soning (Mondorf et al., 2024). Attribution patching leverages
different weights of the model components that are calculated
as a linear approximation using its gradients. Hanna et al.
(2024) employ edge attribution patching with integrated gradi-
ents for multiple tasks, including mathematical reasoning and
compositionality. Lastly, causal scrubbing iteratively masks
components of the model without replacement, assessing the
impact of the removed components on model performance.
Brinkmann et al. (2024) compares probing, activation patch-
ing and causal scrubbing for localizing causal evidence of
decoder-only transformers encoding symbolic reasoning.

Proposal: A Cross-Modal MI Study of Diverse
Reasoning Processes

Although significant progress has been made in understand-
ing (i) the behavior of foundation models with different data
modalities (Lin et al., 2025), and (ii) how foundation models
tackle diverse reasoning tasks, we advocate for identifying uni-
versal reasoning patterns that extend across reasoning types,
MI techniques, and modalities. Drawing an analogy to the evo-
lution from behaviorism to cognitive neuroscience (Bereska
& Gavves, 2024), and inspired by some neuroscience find-
ings on the representation of reasoning in the human brain

(Castañeda et al., 2023; Zuanazzi et al., 2024), we aim to
leverage the causal testing power of MI to probe the internal
circuits that underpin reasoning in artificial systems.

We propose several research directions: (1) Can we iden-
tify distinct circuits for different types of reasoning, and is there
overlap between them? (2) How do these circuits differ when
models perform well on a reasoning task compared to when
they fail, especially in cases where humans excel but founda-
tion models fail such as the ARC challenge (ARC-AGI, 2025)?
(3) Does a general reasoning mechanism exists across lan-
guage, vision, audio, and video, and if so, is transfer learning
between modalities possible? This is closely related to the
“platonic representation hypothesis” (Huh et al., 2024), which
posits that neural networks converge to a shared statistical
model of reality regardless of training objectives or modalities.
By systematically comparing the circuits underlying success-
ful and unsuccessful reasoning in foundation model, we aim
to bridge isolated findings and fill critical gaps in our under-
standing of AI reasoning mechanisms. We acknowledge that
comparing subgraphs across different model architectures is
not trivial – evaluating these circuit differences is crucial for
assessing the universality of reasoning. Moreover, by draw-
ing insights from neuroscience and comparing how reasoning
operates in the brain with AI systems, we aim to gain a richer,
more integrated perspective on the fundamental processes of
reasoning.
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