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Abstract 8 

Perceptual decision-making shows considerable 9 

trial-to-trial variability, which can be captured by 10 

latent variable models of fluctuating decision 11 

strategies. Recently, disentangled Recurrent 12 

Neural Networks (DisRNNs) have achieved data-13 

driven discovery of such trial-to-trial latent 14 

decision strategies in multi-armed bandit tasks.  15 

   In this work, we investigate the applicability of 16 

DisRNNs for uncovering trial-to-trial structure of 17 

perceptual decision-making data. We fit DisRNNs 18 

on simulated Diffusion Decision Model (DDM) data, 19 

where the starting point or drift parameters depend 20 

on past choices. We show that the traces of the 21 

starting point and drift can be recovered in the 22 

latent variables, and that the shape of the trial-to-23 

trial dependency of these parameters can be 24 

interpreted from the update rules learned by the 25 

network. This sets the stage for data-driven 26 

discovery of the sources of across-trial variability 27 

in real perceptual data. 28 
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Introduction 33 

Animals must constantly make decisions about 34 

incoming sensory information: should I attack this prey 35 

from the left or the right? Do I have time to cross the 36 

street before the car arrives? Such perceptual decision-37 

making is intrinsically variable, differing even when 38 

based on the same external information. Recently, 39 

latent variable models have been used to capture 40 

latent, time-varying decision strategies that can explain 41 

a large fraction of trial-to-trial decision variability. 42 

However, these recent models are all limited by a priori 43 

assumptions on the structure of across-trial variability. 44 

For instance, they assume deterministic update rules 45 

(Pedersen et al., 2017), discrete state switches 46 

(Ashwood et al., 2022) or slow drifts in decision 47 

parameters (Gupta & Brody, 2022)). 48 

New interpretable recurrent neural networks (RNNs) 49 

analyze autocorrelation in the input signal to extract 50 

sparse latent variables and update rules (Miller et al., 51 

2023), effectively allowing data-driven cognitive model 52 

discovery. In multi-armed bandit tasks, such 53 

disentangled RNNs (DisRNNs) can uncover the 54 

structure of canonical theories of reward learning 55 

(Miller et al., 2023).  56 

These models offer an exciting opportunity for data-57 

driven discovery of structured across-trial variability in 58 

perceptual decision-making. However, to apply 59 

DisRNNs in this new context, it should first be tested if 60 

they can jointly fit choices and reaction times (RTs) as 61 

these are crucial to disentangle different decision 62 

parameters in perceptual decision-making tasks. In this 63 

work, we thus use different variants of the Diffusion-64 

Decision Model (DDM) to generate datasets, and 65 

assess whether DisRNNs are capable of uncovering 66 

the generative across-trial processes. 67 

Methods 68 

DDM simulations. We first simulated a sequence of 69 

stimuli of a perceptual decision-making task with stimuli 70 

marked as −0.2 and 0.2, to distinguish between the two 71 

choice options (e.g. leftward/rightward motion). We 72 

then simulated choices and RTs from a Diffusion-73 

Decision Model (DDM) using PyDDM (Shinn et al., 74 

2020).  75 

The DDM assumes that an observer accumulates 76 

evidence from a starting point 𝑧 at a drift rate 𝜈 until 77 

reaching a decision boundary ±𝐵 (here 𝐵 = 1). This 78 

accumulation is subject to Gaussian noise (standard 79 

deviation 𝜎 = 1 here) (Figure 1).  80 

We then incorporated structured across-trial 81 

variability in both the starting point and the drift. At each 82 

trial, the integration starting point 𝑧 was updated 83 

following the equation: 84 

𝑧 ← 𝑧 + 𝛼 × ("𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐ℎ𝑜𝑖𝑐𝑒") 85 

where the previous choice was set to −1 or 1, 86 

representing the lower and upper decision boundaries 87 



respectively, and the perseveration rate 𝛼 was set to 88 

0.001. 𝑧 was initialized to 𝑧0 = 0. 89 

The drift rate 𝜈 was a function of current stimulus and 90 

previous trial, such that: 91 

𝜈 = 𝑑 × ("𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒" ) + 𝛽 × ("𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑐ℎ𝑜𝑖𝑐𝑒") 92 

where 𝑑 = 5, and the history-dependent drift bias 𝛽 =93 

0.03. Note that, contrary to the starting point, the drift 94 

rate equation does not accumulate past choices 95 

beyond the trial immediately preceding that one. We 96 

ran 1000 simulations of 500 trials each. 97 

 98 
Figure 1: representation of DDM modelling and sample 99 
response time distributions from simulations.  100 

Figure 1 summarizes the DDM choice process and 101 
displays response times for one simulation at one level 102 
of coherence. 103 

DisRNN fitting. We extended Disentangled RNNs 104 

(Miller et al., 2023) to jointly fit choices and RTs of our 105 

simulated data (Figure 2). These networks are made 106 

interpretable by the introduction of information 107 

bottlenecks that penalize connections that use too 108 

much information from the input. That way, each latent 109 

has a simplified dependency on the inputs. To follow 110 

the structure of the dependency in the simulations, our 111 

network took the stimulus and the past choice as an 112 

input, and it had to predict the current choice and RT. 113 

We set the maximal number of latents to 5. We used 114 

mean-squared error loss to train the model. The 115 

bottleneck penalization was set to 0.001 and we ran 116 

2,000 fitting steps. 700 simulations were used for 117 

training, and 300 for validation. 118 

 119 
Figure 2: DisRNN inputs and outputs 120 

Results 121 

We fit two synthetic datasets, each with a different 122 

source of across-trial variability: starting point or drift. 123 

For each simulation, we observed that the network 124 

captured the structured variability in one latent (Figure 125 

3A and B). Additionally, the network also learned the 126 

update rule for the parameters. Indeed, the starting 127 

point undergoes a linear update from the previous trial, 128 

by construction in the simulation, and we observed that 129 

the logit curve from the latent corresponding to the 130 

starting point is linear (Figure 3C). Similarly, the drift is 131 

constructed as an offset from previous values. This 132 

behavior is transcribed in the corresponding update 133 

rule (Figure 3D) 134 

 135 
Figure 3: comparison of expressive latent evolution 136 
across trials with the starting point (A) and drift rate (B). 137 
The results are shown for one simulation. Update rules 138 
learned by the network for the starting point (C) and 139 
drift rate (D). 140 

Future work will explore different – and more 141 
naturalistic – choice-history effects (in particular, AR 142 
processes and exponential decay of the effect of past 143 
trials with time) as well as discrete state switches 144 
(Ashwood et al., 2022). 145 

Conclusion 146 

In perceptual decision-making tasks, serial 147 

dependence between trials is common in behavior, 148 

despite it not being structurally imposed by the task. 149 

Here, we show that DisRNNs can uncover different 150 

generative models of serial dependence in an evidence 151 

accumulation framework: the progressive time 152 

dependence rule of the starting point and the drift 153 

parameter. The fact that the network learns the update 154 

rules of these parameters sets the for applications on 155 

real data, where sources of variability may follow yet-156 

unknown structures. 157 
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