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Abstract
The human visual cortex contains several regions that
selectively respond to particular categories (e.g. faces,
places, bodies). However, it is unclear whether there
are regions responsive to additional (possibly more com-
plex) categories, either inside or outside the visual cor-
tex. Jointly discovering the categories and the corre-
sponding selective regions, without relying on the re-
searchers’ biased imagination, remains a methodological
challenge. Here, we take an in-silico approach to discov-
ering category-selective regions. We trained a state-of-
the-art transformer-based encoding model that predicts
neural responses from natural scenes. We then used this
model to generate hypotheses about category-selectivity
of different regions throughout the human brain by per-
forming in-silico mapping, using large amounts of com-
putation. We use diffusion-based generative models and
retrieval from large image datasets to find images that
maximally activate different parcels. We found many
parcels with complex selectivity, transcending simple cat-
egorical concepts: scenes with multiple objects (sport
events), specific subcategories (places with vanishing
points or parallel lines), and specific interactions (tool
use). Our study demonstrates a data-driven paradigm for
discovery of visual selectivity for each region with sets
of optimal images. The category-selectivity hypotheses
generated can be tested in future fMRI experiments.
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Introduction
Recent decades have seen great progress in understanding
the brain’s visual hierarchy: how neurons map low-level fea-
tures such as orientation to mid-level categorical concepts.
Extensive neuroimaging experiments, especially functional
magnetic resonance imaging (fMRI), have mapped prominent
categories—faces, places, words, bodies, and food—to dedi-
cated brain regions. But visual perception goes beyond simple
categories and it remains open what higher-level visual con-
cepts enable humans to make sense of the complex world.

Common mapping methods however are limited to
experimenter-curated concepts, and empirically-driven alter-
natives require more data and expensive fMRI experiments.
Our encoding model, leveraging recent advances in AI and
large-scale neural datasets, serves as a “digital twin” that is
fully observable, upon which we perform extensive experimen-
tation to better hypothesize neuron selectivity beyond the vi-

sual cortex. These hypotheses can motivate targeted future
fMRI experiments.

Model Design
Parcellation Strategy
We divided up the 327,684 cortical vertices across the whole
brain into 1,000 regions using the Schaefer-1000 functional
connectivity-based parcellation (Schaefer et al., 2018).
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Figure 1: (a) Brain encoder (b) Schaefer-1000 parcellation

Extending the work of Adeli, Minni, and Kriegeskorte
(2023), our brain encoder predicts vertex-wise activity for the
whole brain from an input image. Patch embeddings are ex-
tracted from a DINOv2 (Oquab et al., 2024) backbone. The
transformer decoder uses parcel-specific queries to attend to
relevant patch embeddings via cross attention. The resulting
representations are linearly mapped to predict neural activity.

To improve the accuracy of our predictions, we ensembled
several instances of the brain encoder. For each subject, we
trained two random seeds with features from four different DI-
NOv2 backbone layers (0, 2, 4, 6 layers from last). To predict
a vertex, we take the weighted average across model predic-
tions, scaled by the confidence of each model for that vertex
based on validation set accuracy. We train these models on
the Natural Scenes Dataset (Allen et al., 2022), the largest
fMRI dataset to date, with up to 10,000 images per subject.

Model Results
Prediction Accuracy
Fig. 2 shows the encoding accuracy of our ensemble model
for subject 1 projected onto the cortical surface using Pycor-
tex (Gao, Huth, Lescroart, & Gallant, 2015). As expected,



Figure 2: Pearson correlation between model predictions and
ground truth data for subject 1 on the held-out test set

the model performs well on predicting the activity in the visual
cortex, but also on several regions beyond the typical visual
pathways. We first validate our paradigm by replicating the
demonstrated selectivity of ventral pathway categorical areas,
and then move on to areas beyond the visual cortex. For our
exploration, we choose parcels that have high noise ceiling
(high visual selectivity) and are well-predicted by our model.

Superstimulus Generation Process

We choose images that maximally activate (mean z-scored
betas) a parcel of interest using three different methods: (1)
held-out NSD images based on ground truth data. (2) the
BrainDIVE model (Luo, Henderson, Wehbe, & Tarr, 2023) (a
generative backbone guided using the gradient from a brain
encoder, to generate images that can maximally activate cer-
tain brain regions). (3) Imagenet (Deng et al., 2009) images
that maximally activate the parcel, according to the encoder.
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Figure 3: (a) The location of the parcel. (b) Held-out NSD that
maximally activate the parcel (based on ground-truth fMRI).
(c) BrainDIVE generated and reranked (top 2.25%) images
optimized for the parcel. (d) Maximally activating images from
Imagenet according to the encoder. (b) Distribution of parcel
activation for all of Imagenet compared to images in (c).

The sample parcel we chose significantly overlaps with
aTL-faces (47.6% of the vertices in the parcel overlap with
aTL-faces). As shown in fig. 3, all the images prominently fea-

ture faces, which agrees with previous work on the selectivity
of this area (Sergent, Ohta, & Macdonald, 1992).
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Figure 4: (a) Parcel location. (b) A comparison of the acti-
vation magnitude of the parcel from all Imagenet images and
the top 9 images, with 95% confidence intervals. (c) Selected
from the 9 images in Imagenet that maximally activate the par-
cel of interest, across subjects 1, 2, 5, and 7. (d) ChatGPT 4o
(04/06/2025) labels for top-25 Imagenet images.

We now explore the selectivity of a parcel outside the vi-
sual cortex (fig. 4a) by examining images from Imagenet pre-
dicted by the encoder to maximally activate this parcel. The
maximally activating images fall substantially outside the dis-
tribution of activations of the parcel by the rest of Imagenet
(fig. 4b). The selected images appear to depict hands with
tools, such as a writing or cooking utensil. When prompted
to describe a unifying theme in the top 25 Imagenet images,
ChatGPT identifies hands with objects as a prominent theme.
Recent work has identified areas that represent tool use in
similar areas of the brain (Cortinovis, Peelen, & Bracci, 2025).

Discussion
Leveraging recent advances in AI and the availability of large-
scale datasets, we demonstrate a data-driven paradigm to
discover the selectivity of parcels beyond the visual cortex,
paving the way for more systematic labeling of the whole brain
to understand higher-order visual processing.
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