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Abstract
Humans can consistently rate the typicality of objects
with respect to basic-level categories, but what do these
ratings reveal about the computational mechanisms un-
derlying categorization? We evaluated human typicality
judgments against predictions from image-computable
models. Each model paired a vision transformer (ViT),
trained on one of five tasks, with one of three cate-
gory structure models—prototype, exemplar, or a linear
decision-bound model. This yielded 15 models system-
atically varying in representational and category struc-
ture assumptions. We found that predictions from a pro-
totype model using the representations of a ViT trained
on image classification aligned most closely with hu-
man judgments. However, this model’s advantage over
the alternatives was not consistently significant, and its
performance remained well below the leave-one-subject-
out noise ceiling. Simulations showed that although
some models were statistically indistinguishable in pre-
diction accuracy, all 15 made distinct predictions. We dis-
cuss experimental design considerations that may enable
stronger comparisons among these alternative models.

Introduction
Humans categorize visual stimuli with remarkable speed and
ease. Yet the computational processes underlying this per-
ceptual function remain unresolved. The problem is twofold:
What is the representational space in which categories are
defined, and how are the categories structured within it?

Advances in deep learning have produced a diverse range
of candidate representational spaces, but it remains unclear
which of them, if any, aligns closely with human categoriza-
tion (Rajalingham et al., 2018; Battleday, Peterson, & Grif-
fiths, 2020; Golan, Raju, & Kriegeskorte, 2020). As for cat-
egory structure, two longstanding theories continue to com-
pete: Prototype theory holds that for each category, people
estimate a mean representation of previously encountered in-
stances and classify new stimuli by comparing them to the
resulting prototypes; Exemplar theory, by contrast, argues
that people store individual category members and classify
new stimuli by comparing them to these previously encoun-
tered exemplars. Distinct from both theories, artificial neu-
ral network classifiers apply multinomial regression to derive
class probabilities, a process more akin to the linear decision
bound model (Ashby & Maddox, 1993).

Typicality judgments, which reflect graded category mem-
bership (Rosch & Mervis, 1975), may provide clues about
the underlying computational mechanisms. Lake, Zaremba,
Fergus, and Gureckis (2015) reported a correlation between
human typicality judgments and neural network classification
confidence, measured as either logits or softmax outputs.
Adapting the design of Battleday et al. (2020), who consid-
ered classification boundaries, we compare human typicality
judgments to neural network predictions, independently ma-
nipulating two factors: (1) the representational model, drawn

from contemporary machine learning, and (2) the structure of
categories within this space, contrasting the prototype, exem-
plar, and linear decision bound models (Fig. 1).

(a) Prototype (b) Exemplar (c) Decision bound

Figure 1: Illustration of three alternative category structure
models within a shared representational space. (a) Proto-
type model: class membership peaks at the category mean.
(b) Exemplar model: class membership peaks in regions with
many nearby category members. (c) Linear decision bound
model: membership increases along a weighted feature axis,
favoring extreme over central exemplars.

Methods
Behavioral data. We reanalyzed the ViSpa typicality exper-
iment (Günther, Marelli, Tureski, and Petilli, 2023, Experiment
3), in which participants were shown sets of five images from
the same category and selected the most and least typical
items. For each of 1500 categories, a single image set was
presented, receiving responses from 30 to 33 participants.1

Class membership modeling. We implemented the cogni-
tive theories using mathematical models naturally aligned with
each. Prototype theory was realized through Linear Discrim-
inant Analysis (LDA), assuming an isotropic Gaussian distri-
bution centered at the mean features of each category. Ex-
emplar theory was realized through Kernel Density Estimation
(KDE) with an isotropic Gaussian kernel. The linear decision-
bound model was realized through multinomial regression.
Each model was fit to the visual features of the ImageNet-21K
examples corresponding to the categories included in ViSpa.
The embeddings were obtained from the penultimate layer of
one of five Vision Transformers (ViTs) trained on different vi-
sual tasks: SLIP, CLIP, SimCLR, and DINOv2 (all from Meta
FAIR), and ImageNet-1K classification (Google, pre-trained on
ImageNet 21K). This resulted in 15 fitted models (three per
ViT). To standardize feature dimensionality, all feature spaces
were reduced to 500 dimensions using principal component
analysis (PCA), fit separately on 2,000 ImageNet-21K cate-
gories not included in the ViSpa experiment.

Response selection modeling. For each set of five ViSpa
images, we transformed model-predicted class membership
scores (logP(image | class) for LDA and KDE, classifica-

1We retained 785 categories in which all five items were unequiv-
ocal members of the named basic-level category, based on visual
inspection. The reported results do not qualitatively change when
this selection procedure is omitted.



tion logits for multinomial regression) into response probabili-
ties using the maximum-difference model (Marley & Louviere,
2005). Specifically, for each of the 20 possible combinations
of an item chosen as most typical and an item chosen as least
typical, we subtracted the score of the least typical item from
that of the most typical item. The resulting 20 logits were
softmax-normalized to obtain response probabilities.

Results
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Figure 2: Performance of prototype, exemplar, and decision-
bound models across different deep neural network feature
spaces. (A) Cross-validated accuracies for predicting hu-
man typicality judgments. Along each horizontal line, filled
dots indicate significantly higher accuracy compared to empty
dots. Each dot corresponds to the bar below it. Wilcoxon
signed rank test, corrected for 105 pairwise comparisons us-
ing Benjamini–Hochberg FDR (q < 0.05). (B) Test classifi-
cation accuracies on the corresponding classes in ImageNet-
21K. The decision-bound model maximized classification
accuracy, but not necessarily alignment with human typi-
cality judgments.

Numerically, the model that best predicted human typical-
ity judgments was the prototype category-structure applied
to the penultimate-layer representations from the ImageNet
classifier (Fig. 2A). However, no single model–feature-space
combination significantly outperformed all others. Accuracy
reached 15.3%, which is significantly above the chance level
of 5% (i.e., the probability of correctly guessing both the most
and least typical items out of five). However, it remains well
below the human leave-one-subject-out noise ceiling (noise
ceiling: 32.75%).

We also evaluated the models’ classification performance

on the corresponding classes in ImageNet-21K (Fig. 2B). The
decision-bound model achieved notably higher classification
accuracy than the prototype and exemplar models. This is
expected, as multinomial regression is discriminative.
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Figure 3: Simulated prediction accuracy on typicality judg-
ments sampled from the DINOv2-prototype model. The data-
generating model achieves perfect self-prediction and signifi-
cantly outperforms all other models. Comparable results were
observed when sampling data from each of the other 14 mod-
els.

Was the similarity in model performance due to indistin-
guishable predictions? We simulated human judgments us-
ing multinomial sampling based on each model’s predictions
(Fig. 3). We found that only the model used to generate the
data reached the noise ceiling, indicating that all 15 models
made distinct predictions.

One way to improve the model–human alignment is to lin-
early reweight the features. However, the associated perfor-
mance gains did not generalize to test data, even with optimal
regularization. This might be due to the structure of the ViSpa
dataset, in which each category has a single five-item test set.

Conclusion

In this work, we have formalized three categorization theories
and applied them to five representational spaces, putting to
test 15 distinct image-computable models.

While models based on neural network representations pre-
dict human typicality judgments at accuracy levels significantly
above chance, our results indicate that we are still far from
achieving two more ambitious goals: (1) to fully account for
human typicality judgments, and (2) to clearly identify the un-
derlying computational mechanisms.

The next steps toward these goals should include collect-
ing more extensive typicality judgment datasets, potentially
using model-guided stimulus synthesis; adapting neural net-
work representations to the new empirical data; and develop-
ing better models of human classification that may integrate
elements of the competing category-structure theories.
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