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Abstract: 
fMRI signals were traditionally seen as very slow, with most rest-
ing-state studies only investigating signals slower than 0.1Hz, but 
task-based studies have shown that fMRI signals up to 0.75Hz re-
flect stimulus-induced neural activity. Here, we investigate whether 
high-frequency fMRI signals can index spontaneous neural activity 
across brain states. Using simultaneous EEG-fMRI in 21 humans 
drifting between sleep and wakefulness, we found an increase in 
fMRI spectral power during NREM sleep (compared to wakeful-
ness) across frequency ranges as fast as 1Hz. Using machine 
learning, we found that these fast fMRI signals predict fluctuations 
in canonical neural rhythms measured with EEG, in subjects held-
out from the training set. Since fMRI signals and neural rhythms 
are sensitive to systemic physiology, we tested whether this predic-
tive fast fMRI information specifically represented neurovascular 
coupling, or was also present in the ventricles. We found that fMRI 
signals as fast as 0.9Hz (for alpha rhythm predictions) and 0.8Hz 
(for delta rhythm predictions) contained unique neural information 
above what was present in the ventricles. These results reveal that 
high-frequency spontaneous fMRI signals are coupled to neural ac-
tivity that varies across brain states and index cognitive processes, 
pushing the boundaries of fMRI’s abilities to reveal brain dynamics 
underlying cognition. 

Introduction 
fMRI is used to infer neural activity via the BOLD (Blood 
Oxygenation Level Dependent) signal, which was tradition-
ally seen as very slow. As a result, fMRI studies sampled data 
in the order of seconds, and analyzed the BOLD signal using 
hemodynamic response functions that assume a sluggish 
BOLD response to neural events. While these approaches 
work well for blocked experimental designs, they can limit 
our ability to investigate faster and more naturalistic varia-
tions in neural activity underlying cognition. Task-based 
studies have shown that the BOLD signal can react much 
faster to stimulus-induced neural activity than previously 
thought, as fast as 0.75Hz in response to visual stimuli (Lewis 
et al., 2016). Furthermore, resting-state studies have detected 
spatially structured BOLD signals in high frequency ranges 
(Boubela et al., 2013; Chen & Glover, 2015). However, it is 
not known whether high-frequency spontaneous BOLD sig-
nals are coupled to spontaneous neural activity, such as the 
neural rhythms that vary across vigilance. Here, we use sim-
ultaneous EEG and fast fMRI to determine how fMRI 
dynamics up to 1Hz change across brain states, and predict 
variations in canonical EEG neural rhythms. 

Results 
We collected EEG and simultaneous fMRI (3T, 2.5mm iso-
tropic voxels, TR=378ms) from 21 subjects naturally drifting 
in and out of sleep. Fig 1a shows data from a representative 
subject: as they drifted from wake to NREM sleep, several 
fMRI bands increased in power; meanwhile, the EEG showed 
an increase in delta power (1-4Hz, associated with memory 
consolidation and sleep quality) and a decrease in alpha 
power (8-12Hz, associated with attention and several other 
cognitive processes). To investigate fMRI power variations, 
we first calculated the fMRI spectrum in each parcellated 

fMRI region (Desikan et al., 2006) across wake and NREM 
sleep (manually scored), and found that fMRI power was sig-
nificantly higher during sleep, as compared to wakefulness, 
in frequencies up to 1Hz (Fig 1b). This significant increase 
was present in many cortical and subcortical regions, but also 
in non-neuronal regions such as the 3rd ventricle, leaving 
open the possibility that this spectral difference was due to 
changes in systemic physiology during sleep rather than re-
flecting unique neural activity underlying brain states. 

To identify how high-frequency fMRI signals are related 
to neural activity without assuming a specific relationship, we 
adapted an existing machine learning approach (Jacob et al., 
2024). We trained neural networks (structure adapted from 
Syeda et al. (2023)) to predict the simultaneous EEG (Fig 1c). 
Occipital EEG power was calculated in 5s windows. Model 
predictors were sliding windows of 60 TRs (~22s) from 84 
anatomically-parcellated fMRI regions (Desikan et al., 2006) 
covering nearly the whole brain, trained to predict the EEG 
point at the center of the window. EEG and fMRI data were 
normalized within each subject. Three subjects were itera-
tively held-out and performance (correlation between 
predictions and truth) was calculated on held-out subjects. 

Models were first trained under 3 conditions using all par-
cellated regions as the input with the following temporal 
treatments: fMRI high-passed above 0.2Hz, unfiltered fMRI 
(beyond the detrending done as part of the pre-processing), 
and a control condition in which the fMRI data were tempo-
rally shuffled. Predictions using the unfiltered fMRI 
replicated prior benchmarks (Jacob et al., 2024). The high-
pass fMRI did not predict as well as unfiltered (as would be 
expected), but it still captured short- and long-range EEG dy-
namics and predicted better than control (Fig 1d, 1e). 

This finding showed that fMRI signals above 0.2Hz are 
coupled to alpha and delta rhythms, but since these arousal-
related rhythms are partially coupled to systemic physiology, 
we next sought to understand how much of the predictive 
fMRI information was specific to neurally-derived BOLD ac-
tivity (rather than the components of the BOLD signal that 
reflect systemic physiology). We thus trained separate mod-
els using fMRI data from different groups of brain regions, 
using a progressively increasing cutoff for the highpass filter 
(Fig 1f). We used the following parcellated regions: all gray 
matter regions (76 features; 38 bilateral cortical and subcor-
tical regions), the average of all cortical voxels (1 feature), 
white matter (2 features, one for each hemisphere), and ven-
tricles (6 features). If the predictions yielded by the ventricles 
are outperformed by the other conditions, this suggests a 
presence of uniquely predictive neural information. The fol-
lowing neural conditions were used: first, all gray matter 
regions, representing region-specific predictive information. 
Second, since prior work showed that the global cortical av-
erage of the BOLD signal is coupled to oscillatory EEG 
activity (Fultz et al., 2019), we used the average of all cortical 



voxels as a separate neural condition, representing large, co-
ordinated activity across the cortex. Prior work has also 
shown that these large BOLD increases in the cortical aver-
age reflect large inflow of blood into the brain (Fultz et al., 
2019; Williams et al., 2023). Thus, we assumed this cortical 
average signal would be partially reflected in the white mat-
ter, and therefore we also included it as a condition. 

The results (Fig 1f) showed that predictive information in 
the individual gray matter regions was degraded when the 
fMRI high-pass cutoff was above 0.3Hz (alpha predictions) 
and 0.2Hz (delta predictions), likely due to worse signal-to-
noise ratios in these fast ranges. Ultra-high field fMRI acqui-
sition may allow for faster information to be identified in 
individual regions. The cortical average predicted well at 
much faster high-pass cutoffs, and this predictive information 

was closely reflected in the white matter (particularly for 
delta predictions). The ventricles, on the other hand, pre-
dicted both EEG rhythms much more weakly than the cortical 
average, suggesting that neurovascular information is present 
in fMRI activity at least as fast as 0.9Hz (alpha) and 0.8Hz 
(delta). To ensure this is not due to decreased signal-to-noise 
in the ventricles, our future aims include assessing how well 
heart rate and respiration can predict these rhythms. 

Alpha and delta rhythms index brain states that represent 
major shifts in attention and cognition. Our results show that 
high-frequency fMRI signals contain surprisingly rich infor-
mation about these neural rhythms, with deep implications 
for evaluating fMRI temporal sensitivity and conducting fu-
ture studies of fast, naturalistic neural processes.  

Fig 1: fMRI activity up to 1Hz changes across states and predicts EEG power. a. Representative variations in EEG and fMRI as a 
subject transitions from wake to NREM sleep. b. Group-level variations (n=21) show significantly higher fMRI power during 
NREM sleep across several frequency bands (black bars indicate p<0.05, Benjamini-Hochberg correction) in both gray matter and 
ventricles. c. We trained neural networks to predict EEG power from fMRI to determine if this high-frequency fMRI activity 
reflects neural activity and not just systemic changes in physiology. d. Representative occipital EEG power predictions (on a held-
out subject) using high-pass filtered fMRI and unfiltered fMRI as predictors. e. Correlation between predictions (on held-out 
subjects) and ground truth using unfiltered fMRI, high-pass filtered fMRI, and temporally shuffled fMRI (control). Means with 
SEM. Gray lines are predictive performance on held-out subjects. f. Correlation between predictions (on held-out subjects) and 
ground truth using fMRI signals from different brain regions, high-passed above progressively higher levels. Means with SEM. 
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