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Abstract
Understanding how neural activity relates to cognitive pro-
cesses during learning requires methods that can jointly
model brain signals and behavior. Here, we extend Dis-
entangled RNNs (DisRNN), an approach for using con-
strained recurrent neural networks to discover cognitive
models, to the case of jointly modeling behavioral data and
measurements of neural activity. We augment a DisRNN
trained on choice prediction with a separate subnetwork to
predict neural activity. We apply this approach to datasets
from a simple reward-learning task, consisting of choices,
rewards, and a scalar measure of dopamine responses
to reward. First, using synthetic data from a Q-learning
agent, we demonstrate the approach is able to capture
both choices and reward prediction errors with a single set
of internal variables, consistent with the groundtruth. Next,
we apply this approach to laboratory data from mice per-
forming a similar task, successfully modeling both choice
behavior and nucleus accumbens dopamine responses.
Analysis of the fit DisRNNs confirms that the same inter-
pretable latent variables are utilized for both choice predic-
tion and dopamine signal prediction, demonstrating the
model’s potential to uncover cognitive models that bridge
behavior and neural data through shared representations.
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Introduction
Understanding the neural mechanisms of reward-guided learn-
ing behavior is a long-standing goal of cognitive neuroscience.
A very common workflow in computational cognitive neuro-
science is to fit computational models to behavior, then to treat
these models as hypotheses about the neural mechanisms
that underlie that behavior. These hypotheses can then be
tested by comparing them to measurements of neural activity
(O’Doherty, Hampton, & Kim, 2007; Daw et al., 2011). An-
other possibility is to fit models jointly to behavior and neural
activity, allowing each modality to constrain the interpretation
of the other (Dezfouli, Morris, Ramos, Dayan, & Balleine, 2018;
Dommanget-Kott et al., 2024). This approach is much less
widely-used, perhaps because fitting neural data typically re-
quires highly flexible models, which are often difficult to inter-
pret as cognitive hypotheses.

Disentangled RNNs (DisRNNs) are a recently-developed
method for automatically learning interpretable cognitive mod-
els from data (Miller, Eckstein, Botvinick, & Kurth-Nelson,
2023). While standard RNNs often learn complex, high-
dimensional internal representations that are difficult to map
onto specific cognitive processes, DisRNNs employ architec-
tural constraints as well as information bottlenecks which im-
pose a cost on information flow in order to encourage sparse
latent representations where key variables capture distinct ele-
ments of the underlying cognitive process.

In this work, we extend DisRNNs to simultaneously fit both
choice behavior and measurements of neural activity. We
apply this approach to synthetic and laboratory datasets of
both choices and dopamine responses in a classic reinforce-
ment learning task. We first validate our approach using syn-
thetic data generated by a known cognitive model (Q-Learning),
demonstrating that our method successfully recovers the key
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Figure 1: The DisRNN-Dopamine model architecture. A core
DisRNN predicts choice (trained in Stage 1), while a sepa-
rate neural network (“Dopamine MLP“) predicts dopamine re-
sponses using the DisRNN latent state and information about
the current trial (trained in Stage 2).

structure and variables of the ground-truth model within inter-
pretable latent variables (Q-values and reward prediction error
simulated as dopamine). Next, we apply the framework to labo-
ratory data from mice performing a two-armed bandit task with
concurrent dopamine recordings (Parker et al., 2016). We find
that the model can simultaneously fit behavioral choices and
neural activity, using the same underlying latent representa-
tions. This indicates that DisRNN, fit jointly in this way, is able to
discover from data computational models that bridge behavior
and neural activity via shared, interpretable computations.

Methods
Our network design (illustrated in Figure 1) builds upon the
Disentangled RNN (DisRNN) proposed by (Miller et al., 2023).
The core DisRNN is trained to predict choices. We augment
it with an additional neural network (“Dopamine MLP”) head
that takes as input the DisRNN’s latent state along with the
current choice and reward, and is trained to predict a measure
of dopamine response.

We employ a two-stage training procedure. Initially, we
train only the parameters of the core DisRNN component and
choice MLP to predict the agent’s choices (at+1) based on past
choices and rewards. This stage uses a standard cross-entropy
loss function. After the first stage, we freeze the parameters of
the core DisRNN and train only the parameters of the newly
added dopamine MLP readout. This stage uses the dopamine
values as the target, minimizing a Mean Squared Error (MSE)
loss between these and the MLP’s output. For training the
dopamine MLP readout, we open up all the latent bottlenecks
which might have been closed in core DisRNN training.

This sequential training approach first allows the DisRNN
to learn latent dynamics relevant to behavior, and then trains
a separate readout to map these learned dynamics onto the
associated dopamine signal.

Results
Synthetic Data
We simulate behavioral and neural data using a Q-Learning
agent performing a two-armed bandit task with drifting reward
probabilities similar to (Miller et al., 2023). As a proxy for
dopamine signal, we compute the reward prediction error (RPE)
on each trial t as the difference between the received reward
rt and the value of the chosen action Qt(at). The objective



(a) Sigma parameters visualized for the bottlenecks. Darker colors
indicate open bottlenecks

(b) Choice MLP output against open bottleneck latents

(c) Dopamine MLP output against bottleneck latents for different com-
bination of choice and reward.

Figure 2: DisRNN-Dopamine recovers latent dynamics of Q-
Learning.

for our network is to jointly predict the agent’s trial-by-trial
choices and the corresponding RPEt . We analyzed the internal
representations learned by the disRNN trained on the synthetic
Q-learning dataset. After training, only two latents exhibited
open bottlenecks, indicating their active use by the network
(Figure 2a). These latents show a pattern consistent with
representation of the Q-values associated with the two actions.

For the separately trained dopamine MLP we observe that
the same two latent variables have open bottlenecks (Figure 2a,
Dopamine MLP Bottlenecks), indicating that the dopamine pre-
diction mechanism leverages the learned Q-value representa-
tions. The predicted dopamine response is contingent on both
the reward and the choice made (Figure 2c) and consistent
with a representation of reward prediction error signal.

Laboratory Dataset

We next evaluated our networks on a dataset collected from
mice performing a similar two-armed bandit task while mea-
surements of dopamine neuron activity in the nucleus acucm-
bens were recorded using fiber photometry (Parker et al.,
2016).

We trained the DisRNN model using the two-stage proce-
dure described in Figure 1 and compare the performance

Figure 3: DisRNN bottleneck analysis on experimental data
from Parker et al. (2016). Similar to synthetic data, latents
used for choice are also utilized by the dopamine prediction
head.

against a Differential Forgetting Q Learning (DFQ) model (Ito
& Doya, 2009) along with a naive baseline with no memory of
trial history in Table 1.

Model Choice NLL ↑ Dopamine MSE ↓
DFQ (Choice Only) 0.6168 2.9351
DFQ (DA only) 0.5 1.6721
Naive / Chance 0.5 2.2181
DisRNN (Ours) 0.6023 1.6553

Table 1: Results from fitting our model on (Parker et al., 2016)
dataset. DFQ (choice only) is trained with choice and hence
doesn’t perform so well on dopamine. DFQ (DA only) is trained
only with dopamine. The naive baseline for dopamine is sim-
ply the average rewarded and unrewarded dopamine record-
ings from the train set. DisRNN provides a unified model for
predicting both choice and dopamine simultaneously. It has
competitive results on the normalized log likelihood (NLL) for
choice and outperforms the baselines for the mean squared
error (MSE) for dopamine.

Crucially, analysis of the internal representations learned
by the DisRNN from the experimental data mirrors the find-
ings from our synthetic experiments. Figure 3 visualizes the
bottleneck activations for the core DisRNN latents, the Choice
MLP readout, and the Dopamine MLP readout. Consistent
with the synthetic results (Figure 2), we observe sparse acti-
vation, with specific latents being utilized by the choice pre-
diction mechanism (Figure 3, Choice MLP Bottlenecks). Im-
portantly, the same subset of latent variables with open bottle-
necks for choice prediction also exhibit open bottlenecks for
the Dopamine MLP (Figure 3, Dopamine MLP Bottlenecks).
This suggests that the DisRNN framework learns behaviorally
relevant representations that are subsequently read out to
predict neural activity, supporting the model’s interpretability
and its potential for uncovering shared neural and behavioral
computations.
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