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Abstract

We introduce Metric-Learning Encoding Models (MLEMs),
a new framework to learn a feature-based metric explain-
ing the geometry of neural representationﬁ Applying
MLEMs to BERT, we track various linguistic features (e.g.,
tense, subject number) and find distinct importance pro-
files across layers. For a given layer, feature importance
ranking corresponds to a hierarchical geometry of rep-
resentations. A univariate variant of our model reveals
remarkable spontaneous disentanglement: in all layers,
distinct neuron groups specialize in encoding single, spe-
cific linguistic features. MLEMs are more robust than
popular decoding methods, offering a powerful tool for
analyzing representations in artificial and biological neu-
ral systems.

Keywords: Feature Attribution; Sentence Embedding; Multi-
variate Encoding; BERT; Metric-Learning

Introduction

A central question in neuroscience and Al is how neural net-
works encode and process language. While modern language
models offer unprecedented access to neural activity, their in-
ternal representational principles remain largely unknown. A
key step is understanding where and how fundamental /in-
guistic features—like grammatical number or syntactic struc-
ture—are encoded.

Two main approaches exist: decoding and encoding (King et
al., 2020). Decoding (or ‘diagnostic probes’) predicts features
from neural activity (Hupkes & Zuidema, 2017; [Tenney et al.,
2019). However, high decodability doesn’t imply causality; a
feature might be decodable due to correlation with a truly en-
coded one. Encoding models reverse this, predicting activ-
ity from features. This allows controlling confounds, but tradi-
tional encoding models are often univariate, predicting single
unit activity (e.g., one electrode/voxel), thus failing to capture
distributed representations.

We introduce Metric-Learning Encoding Models (MLEMs), a
multivariate encoding approach preserving benefits of both
methods. MLEMs model distances between neural repre-
sentations of stimuli (e.g., sentences) as a weighted func-
tion of their linguistic feature differences. This quantifies each
feature’s contribution to representational geometry while ac-
counting for distributed encoding. We apply MLEMs to BERT
(Devlin et al., [2019) to trace sentence processing with com-
plex relative clauses, revealing how syntactic information is
encoded across layers.

Methods
Datasets

To study complex syntactic structure encoding, we created the
Relative-Clause Dataset (7,680 sentences) probing syntac-
tic ambiguity and clause embedding. They are varied and

2A preprint of this work is available (c.f. Jalouzot et al.|(2024)).
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Figure 1: Processing Profile and Hierarchical Geometry
for Relative Clauses. A: Feature Importances (Fls) for top
features in the Relative-Clause dataset. ‘Attachment site’ FI
(red) increases dramatically in middle layers. Decoding accu-
racy (AUC, dashed lines) is at ceiling. B: MDS plot of layer 7
sentence representations. Representations form nested clus-
ters following Fl order: Subject number (circles/triangles) C
Attachment site (colors) > Verb lemma (shades).

annotated for 14 linguistic features, including clause attach-
ment site (center vs. peripheral), relative clause type (subject
vs. object), and noun grammatical number. For the univari-
ate analysis, we used a separate Short-Sentence Dataset
contrasting basic features like tense, question vs. declarative.

Language Model and Representations

We used bert-base-uncased. For each sentence, we ex-
tracted hidden states from the [CLS] token of each of the 12
layers, yielding a 768-dimensional vector per layer as an ag-
gregated, sentence-level representation.
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Figure 2: Disentanglement of Linguistic Features in BERT Layer 5. Units in layer 5 were clustered by univariate Fl profiles.
Each stacked bar is a unit’s Feature Importance profile (colors are features). Units per cluster are sorted by univariate model
performance (black line). Clusters show strong specialization; most units in a cluster are selective for one dominant feature.

Metric-Learning Encoding Models (MLEMs)

MLEMs assume neural representation geometry is informa-
tive. We explain pairwise distances between neural sentence
representations using their linguistic features.

Given sentences, we compute two distance matrices. First,
the neural distance matrix DN, where D?}C is the Euclidean
distance between neural representations of sentences s; and
s;. Second, the feature distance matrix D7V, based on
feature difference vectors A(si,s;) = (Ly(s)2f(s;)) e indi-
cating differing features between s; and s; from a prede-
fined set of features #. Feature distances are the weighted
norm of these difference vectors: (DZ'W)2 = [|A(si,s)| 3 =
A(si,s;)TWA(si,s;), where W is a learned symmetric positive
definite matrix. An MLEM optimizes W to best align feature
and neural distances. For simplicity, we assume W is diago-
nal. We learn these weights via non-negative least-squares
optimization.

To assess each feature’s contribution, we compute its Feature
Importance (FI) via a permutation test: the drop in model per-
formance (Spearman’s p) on a held-out set when that feature’s
values are randomly shuffled.

Results

Processing Profiles of Linguistic Features. Figure E}A
shows FI profiles for the most important linguistic features
across BERT’s 12 layers. While subject number is important
throughout, attachment site (distinguishing center-embedding
from right-branching) shows a striking pattern: negligible im-
portance in early layers, increasing over three orders of mag-
nitude at layer 5, peaking in middle layers. This sharp rise
suggests complex computations for this structural ambiguity
dominate at this stage. In contrast, standard decoding (linear
classifier) shows near-perfect accuracy for all features across
all layers (dashed lines), failing to reveal this layer-specific
specialization and highlighting decoding’s false positive risk.

Hierarchical Organization of Neural Representations.
The MLEM-identified feature importance order directly reflects
neural representation geometry. Figure [IB shows a 2D MDS
projection of layer 7 sentence representations, revealing a
clear hierarchical structure. Representations first separate by
the most important feature, subject number (circles vs. trian-
gles). Within these, sub-clusters form by the second-most im-
portant, attachment site (blue vs. green). These sub-clusters
are further organized by verb lemma (light vs. dark). This
nested structure would be hard to uncover without MLEM'’s
feature ranking.

Disentanglement of Features into Specialized Units. We
used a univariate variant of MLEM, which considers indepen-
dently each of the 768 units per layer, then clustered units by
univariate Fl profiles. Figure [2 shows the results for BERT's
layer 5 on the short sentence dataset. Units segregate into
distinct clusters, each specialized for a single linguistic fea-
ture. This reveals remarkable linguistic information disentan-
glement: BERT dedicates separate neuron groups to different
features without explicit supervision during training.

Discussion

Our findings show that MLEMs are a powerful tool for inter-
preting neural network representations. By modeling repre-
sentational geometry, they offer more nuanced and robust
analysis than standard decoding, which can misinterpret cor-
relations. As multivariate models, they capture distributed
patterns missed by univariate approaches, while their com-
parison reveals single-unit feature specialization. The MLEM
framework is general, applicable to other domains (e.g., vi-
sion), and neural systems (e.g., human brain), offering a
promising path to understanding neural computation princi-
ples.
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