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Abstract
We introduce Metric-Learning Encoding Models (MLEMs),
a new framework to learn a feature-based metric explain-
ing the geometry of neural representations2. Applying
MLEMs to BERT, we track various linguistic features (e.g.,
tense, subject number) and find distinct importance pro-
files across layers. For a given layer, feature importance
ranking corresponds to a hierarchical geometry of rep-
resentations. A univariate variant of our model reveals
remarkable spontaneous disentanglement: in all layers,
distinct neuron groups specialize in encoding single, spe-
cific linguistic features. MLEMs are more robust than
popular decoding methods, offering a powerful tool for
analyzing representations in artificial and biological neu-
ral systems.

Keywords: Feature Attribution; Sentence Embedding; Multi-
variate Encoding; BERT; Metric-Learning

Introduction
A central question in neuroscience and AI is how neural net-
works encode and process language. While modern language
models offer unprecedented access to neural activity, their in-
ternal representational principles remain largely unknown. A
key step is understanding where and how fundamental lin-
guistic features—like grammatical number or syntactic struc-
ture—are encoded.
Two main approaches exist: decoding and encoding (King et
al., 2020). Decoding (or ‘diagnostic probes’) predicts features
from neural activity (Hupkes & Zuidema, 2017; Tenney et al.,
2019). However, high decodability doesn’t imply causality; a
feature might be decodable due to correlation with a truly en-
coded one. Encoding models reverse this, predicting activ-
ity from features. This allows controlling confounds, but tradi-
tional encoding models are often univariate, predicting single
unit activity (e.g., one electrode/voxel), thus failing to capture
distributed representations.
We introduce Metric-Learning Encoding Models (MLEMs), a
multivariate encoding approach preserving benefits of both
methods. MLEMs model distances between neural repre-
sentations of stimuli (e.g., sentences) as a weighted func-
tion of their linguistic feature differences. This quantifies each
feature’s contribution to representational geometry while ac-
counting for distributed encoding. We apply MLEMs to BERT
(Devlin et al., 2019) to trace sentence processing with com-
plex relative clauses, revealing how syntactic information is
encoded across layers.

Methods

Datasets

To study complex syntactic structure encoding, we created the
Relative-Clause Dataset (7,680 sentences) probing syntac-
tic ambiguity and clause embedding. They are varied and

2A preprint of this work is available (c.f. Jalouzot et al. (2024)).
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Figure 1: Processing Profile and Hierarchical Geometry
for Relative Clauses. A: Feature Importances (FIs) for top
features in the Relative-Clause dataset. ‘Attachment site’ FI
(red) increases dramatically in middle layers. Decoding accu-
racy (AUC, dashed lines) is at ceiling. B: MDS plot of layer 7
sentence representations. Representations form nested clus-
ters following FI order: Subject number (circles/triangles) ⊂
Attachment site (colors) > Verb lemma (shades).

annotated for 14 linguistic features, including clause attach-
ment site (center vs. peripheral), relative clause type (subject
vs. object), and noun grammatical number. For the univari-
ate analysis, we used a separate Short-Sentence Dataset
contrasting basic features like tense, question vs. declarative.

Language Model and Representations

We used bert-base-uncased. For each sentence, we ex-
tracted hidden states from the [CLS] token of each of the 12
layers, yielding a 768-dimensional vector per layer as an ag-
gregated, sentence-level representation.
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Figure 2: Disentanglement of Linguistic Features in BERT Layer 5. Units in layer 5 were clustered by univariate FI profiles.
Each stacked bar is a unit’s Feature Importance profile (colors are features). Units per cluster are sorted by univariate model
performance (black line). Clusters show strong specialization; most units in a cluster are selective for one dominant feature.

Metric-Learning Encoding Models (MLEMs)

MLEMs assume neural representation geometry is informa-
tive. We explain pairwise distances between neural sentence
representations using their linguistic features.
Given sentences, we compute two distance matrices. First,
the neural distance matrix DN , where DN

i j is the Euclidean
distance between neural representations of sentences si and
s j. Second, the feature distance matrix DF ,W , based on
feature difference vectors ∆(si,s j) = (1 f (si )̸= f (s j)) f∈F , indi-
cating differing features between si and s j from a prede-
fined set of features F . Feature distances are the weighted
norm of these difference vectors: (DF ,W

i j )2 = ||∆(si,s j)||2W =

∆(si,s j)
TW∆(si,s j), where W is a learned symmetric positive

definite matrix. An MLEM optimizes W to best align feature
and neural distances. For simplicity, we assume W is diago-
nal. We learn these weights via non-negative least-squares
optimization.
To assess each feature’s contribution, we compute its Feature
Importance (FI) via a permutation test: the drop in model per-
formance (Spearman’s ρ) on a held-out set when that feature’s
values are randomly shuffled.

Results
Processing Profiles of Linguistic Features. Figure 1A
shows FI profiles for the most important linguistic features
across BERT’s 12 layers. While subject number is important
throughout, attachment site (distinguishing center-embedding
from right-branching) shows a striking pattern: negligible im-
portance in early layers, increasing over three orders of mag-
nitude at layer 5, peaking in middle layers. This sharp rise
suggests complex computations for this structural ambiguity
dominate at this stage. In contrast, standard decoding (linear
classifier) shows near-perfect accuracy for all features across
all layers (dashed lines), failing to reveal this layer-specific
specialization and highlighting decoding’s false positive risk.

Hierarchical Organization of Neural Representations.
The MLEM-identified feature importance order directly reflects
neural representation geometry. Figure 1B shows a 2D MDS
projection of layer 7 sentence representations, revealing a
clear hierarchical structure. Representations first separate by
the most important feature, subject number (circles vs. trian-
gles). Within these, sub-clusters form by the second-most im-
portant, attachment site (blue vs. green). These sub-clusters
are further organized by verb lemma (light vs. dark). This
nested structure would be hard to uncover without MLEM’s
feature ranking.

Disentanglement of Features into Specialized Units. We
used a univariate variant of MLEM, which considers indepen-
dently each of the 768 units per layer, then clustered units by
univariate FI profiles. Figure 2 shows the results for BERT’s
layer 5 on the short sentence dataset. Units segregate into
distinct clusters, each specialized for a single linguistic fea-
ture. This reveals remarkable linguistic information disentan-
glement: BERT dedicates separate neuron groups to different
features without explicit supervision during training.

Discussion
Our findings show that MLEMs are a powerful tool for inter-
preting neural network representations. By modeling repre-
sentational geometry, they offer more nuanced and robust
analysis than standard decoding, which can misinterpret cor-
relations. As multivariate models, they capture distributed
patterns missed by univariate approaches, while their com-
parison reveals single-unit feature specialization. The MLEM
framework is general, applicable to other domains (e.g., vi-
sion), and neural systems (e.g., human brain), offering a
promising path to understanding neural computation princi-
ples.
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