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Abstract

We investigate optimal strategies for decoding natural
speech from fMRI data with limited participantsﬂ Us-
ing data from [LeBel et al.| (2023) from 8 participants, we
show that deep neural networks can effectively predict
LLM-derived text representations with performance di-
rectly scaling with the amount of training data. Then,
in this data regime, we observe that multi-subject train-
ing does not improve decoding accuracy compared to a
single-subject approach. Furthermore, we find that our
decoders better model syntactic than semantic features.
Our results highlight deep phenotyping benefits and sug-
gest multi-subject decoding needs more data per subject
or a substantially larger cohort.
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Introduction

Recent advances in neuroscience have demonstrated the fea-
sibility of decoding complex percepts from brain activity. Us-
ing functional MRI (fMRI), several studies have achieved im-
pressive decoding of auditory stimuli (Tang et al., 2023; |Ye et
al.,|2025). These successes often rely on "deep phenotyping”
datasets, where a large amount of data is acquired from each
participant. A major challenge is to leverage data from multi-
ple participants, and a key issue is to determine if inter-subject
variability can be overcome.

In this work, we investigate optimal data acquisition strategies
for decoding perceived natural speech from fMRI when only a
limited number of participants are available. We train DNNs
with a contrastive objective to predict LLM-derived text repre-
sentations from fMRI. Our contributions are: (1) We show that
this approach effectively decodes natural speech from fMRI.
(2) We find that decoding performance scales with the quan-
tity of data per participant. (3) We demonstrate that in a low-
N regime (N=8), multi-subject training does not improve, and
can even hinder, decoding performance compared to single-
subject models.

Methods

Our goal is to learn a mapping from fMRI signals to high-level
text representations.

Data and Task We use the fMRI dataset from |LeBel et al.
(2023), which contains recordings from eight participants lis-
tening to natural stories. The amount of data per participant is
imbalanced, with three participants having significantly more
data (~16.5 hours each) than the others (~6 hours each).

Preprocessing and Representations fMRI data were pre-
processed using fmriprep, temporally smoothed, and stan-
dardized. We selected the top 4096 voxels for each subject

A preprint version of this work is available (c.f. |Jalouzot et al.
(2025)).

Subject
o034 —1—3—5 7
© 2— 4—6— 8
3
o 0.2
g
(=)
= 01 A
o
= | ———————— _ ___ BrainLLM
0.0 o =EmEE s EEEEEEEEEs
| Y Chance
7 / T T T III] T T T LI II] T T
0 103 104
~ 30 min ~ 5 hours

Number of training samples

Figure 1: Impact of the amount of training data on single-
subject decoding performance. Top-10 accuracy increases
with more training data per subject, not yet plateauing at 13.5
hours.
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Figure 2: Impact of setup choices on decoding performance
on the subjects with the most data (1, 2, and 3). Each modifi-
cation (blue labels) incrementally improves top-10 accuracy.

based on their performance in a simple encoding model. For
text, we used LLM2Vec (BehnamGhader et al., [2024) to gen-
erate 4096-dimensional embeddings of text chunks. To ac-
count for the hemodynamic delay, we introduced a lag (T = 6s)
between the fMRI signal and the target text embedding. We
also enriched text representations by including a context of
preceding text (c = 6s).

Model and Training We trained a DNN composed of MLP
layers, layer normalization, and skip connections, inspired by
Scotti et al| (2024). The model was optimized using a con-
trastive loss (Radford et al.| |2021). We compared two main
setups:

* Single-subject: An independent decoder is trained for
each participant.

* Multi-subject: A single decoder with a shared backbone
is trained on data from all subjects. The first layer is
subject-specific to project individual brain data into a com-
mon space.
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Figure 3: Impact of multi-subject training. For each subject (color), we plot the best decoding accuracy achieved when included in
a multi-subject model of size N (x-axis). Performance does not improve over single-subject models (N=1), and can even degrade

for larger models (right panel).

Evaluation Models were evaluated on a retrieval task. For
a given test fMRI volume, the decoder predicts a text embed-
ding. We then rank all embeddings in a large test set (approx.
2000 candidates) based on their cosine similarity to the pre-
diction. Our primary metric is top-10 accuracy: the frequency
at which the ground-truth embedding appears in the top 10
candidates.

Baseline As a point of comparison, we use a baseline de-
rived from the work of [Ye et al.| (2025), who also used this
dataset for a text generation task. We evaluated their pre-
dicted embeddings within our retrieval framework. This Brain-
LLM baseline achieves an average top-10 accuracy of 1.6%,
serving as a strong reference point above chance level.

Results

Single-Subject Performance Scales with Data As shown
in Figure the performance of single-subject decoders
strongly correlates with the amount of training data. For the
three participants with the most training data (~13.5 hours),
we achieved an average top-10 accuracy of 27%, with a peak
of 36% for one subject. This performance is substantially
above both chance level (0.05%) and the BrainLLM baseline
of 1.6% (Figure[T). For participants with less training data (~4
hours), accuracy was lower (avg. 6%). Crucially, performance
does not plateau, suggesting that acquiring even more data
per individual would yield further improvements. This result
provides strong evidence for the value of deep phenotyping.

Systematic Pipeline Optimization Our final decoding
pipeline was the result of several incremental improvements.
Figure 2| shows the contribution of each component. Start-
ing from a basic MLP with MSE loss, we found that adding
a hemodynamic lag, using contextualized text embeddings,
switching from BERT representations to LLM2Vec, employing
a contrastive loss, and using a more sophisticated DNN archi-
tecture all provided significant gains in performance.

Multi-Subject Training Does Not Improve Performance
Contrary to what might be expected, training a multi-subject
model did not improve decoding accuracy for individual sub-
jects. As shown in Figure [3] performance for any given sub-
ject (colored lines) does not increase as more subjects are
added to the training pool (x-axis). In fact, for larger models,
performance often degrades compared to the single-subject
baseline (N=1). In this data regime, the model struggles with
inter-subject variability, and subject-specific patterns are bet-
ter learned by dedicated models.

Decoder is More Sensitive to Syntax than Semantics To
understand what linguistic features drive performance, we an-
alyzed the best- and worst-decoded stories. A quantitative
analysis revealed that our decoders are more sensitive to syn-
tactic structure than to semantic content; the syntactic simi-
larity between the ground-truth and retrieved text drops more
sharply than semantic similarity for top candidates. This is cor-
roborated by a qualitative analysis showing that stories with
simpler, conversational syntax are decoded more accurately
than those with complex sentences and abstract ideas. Cur-
rent decoders, while effective, may be biased towards more
superficial linguistic features, and future work should aim to
better capture semantic nuances.

Discussion

The central result of our study is the clear superiority of a
"deep phenotyping” strategy over a multi-subject approach
when working with a small cohort. Performance scales di-
rectly with the amount of data per participant, while pooling
data across subjects fails to provide a benefit, likely due to
high inter-subject variability in the neural representation of lan-
guage. This has strong practical implications for experimental
design in fMRI-based decoding: for studies with a limited num-
ber of participants, resources are better spent maximizing the
data collected from each individual rather than increasing the
number of subjects with less data each.
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