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Abstract 
Researchers have long debated the origins of 
category-selective visual cortex. Recently, some 
have argued that face- and scene-selective cortex can 
naturally emerge from contrastive self-supervised 
learning instead of domain-specific learning 
objectives. Here, we aggregated an image set for 
testing classic effects of the FFA and PPA. We ran 
replication fMRI experiments for these effects, 
characterizing the FFA and PPA’s distinct feature 
tuning. We then applied this test battery to a self-
supervised vision model, finding that its face- and 
scene-selective features naturally exhibit many of 
these effects as well. Our findings support the 
argument that properties of human category-
selective cortex can emerge from contrastive 
learning objectives, though our test battery also 
revealed specific shortcomings that could be 
improved in future models. 
Keywords: contrastive learning; faces; scenes 

 
Introduction 

     What learning processes create face- and scene-
selective visual cortex? One possibility is that these brain 
regions are formed by separate domain-specific learning 
objectives (e.g., face identification vs scene navigation) 
(Dobs et al., 2022). Recent work provides computational 
plausibility for an alternative account, showing that 
contrastive self-supervised learning can produce face- 
and scene-selective feature populations (Margalit et al., 
2024; Prince, Alvarez, and Konkle, 2024). Here, we 
explore feature tuning in SimCLR-ResNet50, a self-
supervised learning model trained on ImageNet. Our aim 
was to determine the degree to which this model exhibits 
the same detailed representational signatures as face- 
and scene-selective cortex.  

 
Results 

Identifying face- and scene-selective features.  
In a block-design fMRI experiment, we used a functional 
localizer approach to identify the FFA and PPA in human 
participants (n=16). An analogous process was used to 
identify face- and scene-selective features in the model. 
These model feature populations will be referred to as 
model FFA and PPA. See Fig 1A for more information on 
the localizer approach. 
Testing signatures of category-selective cortex. 
We created an image set sampling 40 conditions from 
fMRI papers on the FFA and PPA (5152 images, see Fig 
1B). These conditions probe a variety of visual properties 

including retinal size, curvature, animacy, real world size, 
face shapes, and scene structure. In a block-design fMRI 
experiment, we measured the mean activation to each of 
these 40 conditions in the FFA and PPA. Analogously, we 
measured the mean activation to each condition in model 
FFA and PPA. When considering all the conditions, 
activations in the model FFA and PPA correlated strongly 
with activations in human FFA and PPA (rho = 0.75 for 
FFA, 0.92 for PPA, Fig 1C). Next, we test specific 
contrasts, focusing on those that successfully replicated 
in our fMRI data (Fig 1C). All contrasts depend on paired 
t-tests at a threshold of p<0.05.  
 
Animacy and Size. Category-selective regions overlap 
regions preferring animals, big objects, or small objects 
(Konkle and Caramazza, 2013). Likewise in our study, 
human and model FFA both preferred animals, while 
human and model PPA both preferred big objects. Mid-
level visual features, as operationalized by Long, Yu, and 
Konkle (2018), were sufficient to elicit these preferences 
in both humans and models. 
 
Curvature preferences. We replicated previous findings 
that human FFA and PPA exhibit opposite preferences for 
curvature properties (Yue, Robert, Ungerleider, 2020). 
Human and model FFA preferred curvy textures and 
objects, while human and model PPA preferred rectilinear 
textures and objects. Thus, category-selectivity covaries 
with mid-level curvature preferences.  
 
Faces with texture variation. We replicated the finding 
that the human FFA generalizes to face shapes across a 
broad variety of textures, preferentially responding to 
animal faces, objects that look like faces (pareidolia), and 
cartoon faces (Tong et al., 2000; Wardle et al., 2020). In 
comparison to objects, Model FFA exhibited preferences 
for animal faces and for objects that look like faces, but 
not for cartoon faces. Thus, model FFA generalizes 
across some textures but not to simple contours alone. 
 
Scene-specific effects. Activity in the human PPA 
depends on spatial scale, responding minimally to single 
objects, an intermediate amount to reachable surfaces, 
and most to navigable spaces (Josephs and Konkle, 
2020). This finding was replicated in human PPA and was 
also found in model PPA. Next, we replicated findings that 
human PPA preferentially responds to empty rooms 
rather than randomly rearranged room surfaces, or to 
multiple object arrays (Kamps et al., 2016). However, 
model PPA did not show these effects, indicating that it 
lacks sensitivity to coherent room surface configurations. 
 



 
Figure 1. A. Depiction of the localizer procedure. B. Example images from the 40-condition test set. C. Specific effects 
in human participants and model features.  
 
Comparing retinal size vs category effects. Activity in 
category-selective regions is influenced by both 
retinotopy and image category (Groen, Silson, and Baker, 
2017). Here, we measure activations to faces, objects, 
and scenes at two sizes: 224x224 pixels or 75x75 pixels. 
Human FFA and PPA were more affected by category 
variation than image size variation. However, model 
features showed the opposite result, indicating insufficient 
tolerance to visual size variation, despite large amounts 
of visual size variation being included in the training 
augmentations.  

 

Discussion 
Contrastive self-supervised learning produced many 
aspects of category-selective feature tuning without 
innate biases for domain-specific learning. However, 
model features were overly influenced by visual size, 
model FFA did not generalize to line contours, and model 
PPA was not sensitive to room surface structure. Future 
experiments could investigate whether different learning 
factors narrow this gap, including naturalistic image diets, 
varied augmentation schemes, or fine tuning on domain-
specific goals. The battery of tests compiled here provide 
a thorough benchmark for models of face- and scene-
selective cortex.  
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