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Abstract 
Animals and humans often reject immediate 
rewards by using mental models to plan for future 
outcomes. However, proactive rejection—
intentionally skipping favorable immediate 
options—has been understudied due to 
difficulties distinguishing it from forced or 
reactive rejections. Using a custom-designed 
Minecraft-based 3D foraging task paired with a 
sequential Bayesian inference model, we 
systematically identified and characterized 
proactive rejection behaviors. Participants 
strategically increased rejection of immediate 
rewards as spatial regularity became more 
apparent, resulting in enhanced overall foraging 
outcomes. Our computational modeling revealed 
that planning depth and preference for 
information gathering significantly predicted 
rejection frequency. Crucially, proactive rejection 
behaviors—unlike reactive rejections—were best 
explained by adaptive modulation of planning 
depth and information prioritization based on 
participants' confidence in spatial regularity. 
These findings provide mechanistic insights into 
proactive rejection, highlighting its potential as a 
behavioral marker for goal-directed planning 
processes. 
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Task description 

Naturalistic 3D foraging task 
We designed a task within a 3D grid world, where rewards 
consisting of two different types (apples and grapes) and 
varying quantities (high and low) were placed at 
intersections. Participants were asked to maximize 
reward collection within a limited number of decision-
making steps, while maintaining a specified collection 
ratio between the two reward types. Prior to reward 
collection, participants freely explored the environment to 
determine if rewards of the same type were spatially 
clustered (structured) or if different types were randomly 
dispersed (random). Structured environments contained 
patches (Constantino et al., 2015) with dominantly 
clustered rewards, including a high-value reward located 
centrally within these patches, which was crucial for 
optimal foraging outcomes. Participants were thus 

encouraged to develop strategies informed by the spatial 
regularity of rewards. 

 
[Figure 1] (A) Task overview. Players freely navigated a 
3D map using five actions (up, down, left, right, forage), 
with visibility limited to nine adjacent reward positions at 
each step. An interface displayed the current reward 
status and compositional goal (B) Task in game view (C) 
The grid map remained constant, but reward arrangement 
classified environments as random or structured.  
 

Agent based generative model 
Model structure 
We developed an agent-based generative model with 
fourteen parameters to explore latent processes 
underlying complex decision-making during reward 
collection. The model takes reward maps, inventory 
status, and remaining steps as inputs and outputs one of 
five actions through a hierarchical five-step decision 
process. First, the agent calculates spatial regularity as 
spatial entropy (Zhao, 2019). Second, it updates beliefs 
about environmental structure using Bayesian inference 
(Sarafyazd et al., 2019) based on the spatial entropy 
calculated in the first step. Third, if the belief exceeds an 
individually fitted threshold and the current position is 
determined to be within or at the boundary of a reward 
patch, the agent reconstructs unseen areas. Fourth, the 
agent conducts multiple planning simulations via tree 
search within the reconstructed cognitive reward map, 
computing the utility of each potential plan in terms of 
information and reward value. Finally, actions are 
selected by integrating these utilities based on beliefs 
about environmental structure, effectively balancing 
immediate rewards with exploratory actions.



 
[Figure 2] Hierarchical generative model. The agent’s confidence in environmental regularity modulates planning depth during tree 
search and policy mixture ratio between reward and information-seeking strategies. 
 

Results 
Human performance (N=24) 
We categorized rejection behaviors into two types— 
reactive rejection and proactive rejection—based on the 
current reward status (Juechems et al., 2019) and the 
types of rewards encountered (Figure 3A). Reactive 
rejection involves skipping a surplus reward type to 
restore balance in the reward inventory. In contrast, 
proactive rejection occurs when participants intentionally 
skip a beneficial reward—one that could alleviate current 
redress pressure—to continue exploring. Participants 
skipped rewards more frequently in structured 
environments, where future rewards were spatially 
predictable (Fig 3B). Notably, proactive rejection showed 
a positive correlation with foraging scores.  

 
[Figure 3] (A) The type of rejection is determined based on 
whether the given offer aligns with the goal in the current state. 
(B) Skipping frequency and rejection type across environmental 
conditions  
Model performance 
We assessed whether the model accurately replicated 
human planning behavior, which would be revealed in the 
rejection pattern. We found that the trajectory generated 
by the generative model on the same map as the human 
showed a high correlation in skipping frequency (Figure 

4A). The generative model's performance in predicting 
human behavior improved only under structured 
environments when the planning depth and policy mixture 
ratio were dynamically modulated based on confidence in 
environmental regularity (Figure 4B). Overall skipping 
frequency was positively correlated with deeper planning 
depth and greater information policy prioritization (Figure 
4C), and notably, proactive rejection showed a strong 
association with both latent features (Figure 4D). 

 
[Figure 4] (A) Reward skipping comparison between humans 
and fitted generative model (B) Model performance across 
environmental conditions (C) Rejection frequency across model 
parameters (D) Model parameters across rejection type 

Conclusion 
This study demonstrates that skipping behaviors arise 
from flexible adjustments in planning depth and targeted 
prioritization of information-seeking, particularly as spatial 
configurations become more predictable. Proactive 
rejection highlights the essential role of these latent 
features in decision-making. The performance gain 
associated with these adaptive adjustments suggests that 
modulating planning depth and behavioral policies is 
advantageous in environments with varying degrees of 
regularity. 
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