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Abstract:
Understanding how the brain processes dynamic 
visual stimuli remains a central challenge in 
neuroscience. Although recent AI-based methods 
have succeeded in reconstructing static images 
from fMRI data, decoding continuous movie scenes 
entails another complexity layer to navigate 
spatiotemporal brain activities that are distinctly 
represented across different individuals. Here, we 
propose a multi-subject fMRI decoding framework 
to combine inter-subject functional alignment—
which uncovers shared neural representations 
among participants—with subject-specific tokens 
to tag idiosyncrasy of an individual’s functional 
dynamics in learning fMRI representation. By 
integrating these two complementary techniques, 
our method simultaneously achieves robust cross-
subject generalization and person-optimized 
modeling, requiring only minimal fine-tuning. 
Moreover, we also employed a whole-brain 
Transformer to link fMRI signals to the CLIP image-
text embeddings, preparing enriched brain-video 
mapping input representation for a subsequent 
video generation. Finally, we employed 
AnimateDiff and FreeInit, the two up-to-date 
algorithms to maximize temporal coherency across 
reconstructed frames. Advancing fMRI movie 
decoding techniques holds a promise to develop a 
quantitative mean to scrutinize brain dynamics 
underlying naturalistic visual experiences. 
Keywords: fMRI decoding; movie reconstruction; 
shared response model; cross-subject 
generalization 

Introduction 
The human brain processes visual information through 

distributed neural activity across multiple cortical areas, 
forming hierarchical representations of both low-level 
visual features and high-level semantic content (Huth et 
al., 2016). Decoding these complex neural signals to 
reconstruct the original stimuli has recently become a 
more realistic goal in cognitive neuroscience, thanks to 
the rapidly advanced AI fields. Indeed, recent self-
supervised learning techniques such as latent Diffusion 
models has enabled significant progress in fMRI-based 
visual reconstruction, generating high-quality images 
purely from the brain activity (Takagi & Nishimoto, 2023; 
Ozcelik & VanRullen, 2023). 

Yet, the current approaches face two key issues to 
address: i) so far the test has been conducted only for 
‘static’ image reconstruction, while our biological brain 
processes nearly all the time spatiotemporally active 
stimuli (e.g., animated scenes) and ii) most of these 
algorithms require extensive subject-specific training 
data. This (second) issue is particularly critical in terms 
of generalizability, as the methods trained only on one 
person typically perform poorly when applied to 
others—necessitating costly and time-consuming data 
collection for each new subject. 

Here, we provide a cross-subject fMRI-based movie 
decoding framework to tackle inter-subject variability 

through FastSRM (Richard et al., 2019), a technique to 
align individual fMRI responses across participants into 
a common representational space while preserving 
stimulus-driven neural dynamics. We also implemented 
a whole-brain Transformer to boost a reconstruction 
accuracy, adding a subject-specific token to tag a 
remaining individual idiosyncrasy during the algorithm 
training. By extracting both group-common and 
personalized neural representation, our method aimed 
at a high accuracy of individualized brain decoding, 
while making it more practical for real-life application. 

 
Figure 1. Model overview. Three-stage framework: SRM 

alignment, contrastive learning with Transformer, and video 
generation. Bottom: train/test data splitting strategy. 

 

Method 
fMRI Preprocessing We analyzed the StudyForrest 
data (Hanke et al., 2016), which includes the 2-hours of 
fMRI from subjects watching natural movies (“Forrest 
Gump”, 3T scanner, 8 runs of ~15 minutes each). From 
the available 15 participants, we selected five (sub1–5) 
for analysis due to computational constraints, with plans 
to extend this approach to the full dataset in future work. 
To address inter-individual variability, we implemented 

Fast Shared Response Modeling (FastSRM) to align 
subject-specific fMRI time series into a shared 
representational space. This alignment identifies 
common stimulus-driven neural representations while 
preserving subject-specific idiosyncrasies that are later 
captured by our subject specific tokens. We trained 
FastSRM on three participants (sub 1-3) and applied 
this to two new cases (sub 4-5). Post-alignment 
analysis showed significant increase of inter-subject 
correlation (ISC; particularly in the visual and attention 
networks; Figure 2), demonstrating its validity. 
For evaluation, we divided each data into four 

segments (Run12, Run34, Run56, Run78), each 
comprising approximately 30 minutes. We selected 



every 10th clip for testing and excluded two clips before 
and after that (testing) clip to avoid an overfitting issue. 
This setup ensures fair performance evaluation while 
preserving the richness of the original movie stimulus.

 
Figure 2. FastSRM Results: (Left) ISC distributions across 
Yeo 7 networks before and after SRM between sub 4 and 5 

(Right) Brain maps showing increased ISC after SRM  
 

Movie Decoding Pipeline 
Our decoding pipeline integrates three components to 

transform fMRI signals into video reconstructions: 
1. fMRI Transformer Architecture: We implemented a 
Transformer model that processes whole-brain activity 
(59,412 voxels) divided into 928 patches. With 1024-
dimensional embeddings, 8 attention heads, and 12 
layers, this whole-brain approach learns spatiotemporal 
fMRI signals without relying on predefined brain regions 
(see the next paragraph for the training details). Our 
approach maximize the data utility by balancing the 
learning of both shared and individual neural patterns: 
FastSRM provides cross-subject alignment of stimulus-
driven responses, while subject-specific tokens capture 
unique neural signatures that persist after alignment. 

2. Contrastive Learning Framework: We trained the 
Transformer through a contrastive learning to establish 
a relationship between fMRI signals and CLIP's visual-
semantic representations. Specifically, the objective 
function minimizes distances between brain activity 
patterns and their corresponding CLIP representations 
and pulled relevant embeddings closer, while pushing 
unrelated ones apart. This approach enables the model 
to capture both perceptual features and semantic 
content from brain activity. For generalizability, we 
trained this framework on subjects 1-3, and applied 
lightweight fine-tuning to subjects 4-5.  
3. Video Reconstruction: We combined two recent 
video-processing algorithms, namely AnimateDiff (Guo 
et al., 2023), a Stable Diffusion-based model, and 
FreeInit (Wu et al., 2023) to enhance a temporal stability. 
Notably, FreeInit's noise initialization ensures coherent 
transitions between frames and reduces flickering 
artifacts. We applied five FreeInit iterations during 
inference to produce 2-second videos at 6fps, 
successfully preserving both structural details and high-
level semantics from the original movie scenes. This 
approach allows us to generate videos that maintain 
consistent visual flow and temporal coherence 
throughout the movie sequences. 

Results 

 
Figure 3. Decoding results and the effect of FreeInit. 

 

We visualized the decoded movie frames across five 
participants (Figure 3). Sub1-3 showcase within-
subject reconstructions, while Sub4-5 reveal to some 
extend a generalization to the new brains after fine-
tuning. The reconstructions capture cinematic elements, 
highlighting its ability to extract visual narratives from 
diverse neural patterns. Notably, FreeInit enhanced a 
temporal flow, eliminating jarring transitions for more 
naturally flowing visual sequences. 

 
 Figure 4. Quantitative evaluation (values averaged across 

all runs) (left) and Training Efficiency (right) 
To quantitatively evaluate our method, we compared 

normal versus shuffled brain-movie pairings (left). Non-
shuffled conditions consistently outperformed shuffled 
baselines, confirming our meaningful reconstruction of 
brain-stimulus relationships. Fine-tuned subjects (4-5) 
performed comparably to training subjects (1-3). The 
Figure 4 (right) shows efficiency of our framework: fine-
tuning on sub4 converges in just 20 epochs (blue line), 
while training from scratch requires significantly more 
iterations (~300 epochs, green line), and no fine-tuning 
on sub 4 yields poor results (orange line). These results 
confirm that our method enables effective cross-subject 
generalization with minimal additional training. 

Conclusion 
Here we propose a multi-subject fMRI movie decoding 

framework that enables semantically and temporally 
consistent video reconstruction. By combining 
FastSRM alignment, Transformers, and diffusion 
models, our method showcase a potential to generalize 
for new subjects, with minimal fine-tuning. 
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