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Abstract
Many studies have attempted to enhance the performance
of convolutional neural networks (CNNs) by increasing
model complexity, adding parameters, or adopting alter-
native architectures. Our approach differs in that we pri-
oritise ecological plausibility in order to achieve high ac-
curacy with minimal computational cost. We focus on
visual search, which requires the localisation and cate-
gorisation of a target object in natural scenes. Due to
the inhomogeneity of foveal retinotopy in human visual
representations, localisation plays a key role in correctly
categorising labels of interest when performing this task.
We propose a framework referred to as a ’likelihood map’,
based on the probability of correctly identifying the target
label, which explores prediction by a dedicated network
according to the position of the fixation point. Depend-
ing on the scenario, it can be guided (or not guided) by
the target label in a manner similar to Grad-CAM or DFF.
In both scenarios, we demonstrate improved classifica-
tion performance when the sensor shifts towards the re-
gion of interest. Beyond its computational benefits, this
framework can be used as an experimental tool to further
investigate the neural mechanisms underlying visual pro-
cessing.
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Figure 1: Display of different saliency maps produced by
methods using the same CNNs. From left to right : Likeli-
hood map, Grad-Cam maps, Deep Feature factorisation (DFF)
produced when all methods successfully located the label of
interest. Note that for the Likelihood map and Grad-Cam
methods, the label is provided to the networks (label displayed
: common iguana), whereas only DFF performs a categorisa-
tion along the localisation (label predicted : common iguana).

Grad-Cam and Deep Features Factorisation
Class Activation Mapping method (CAM) operates by analyz-
ing the CNN’s inner layers in relation to the targeted class, as-
signing weights to activations in each spatial feature map (Sel-
varaju et al., 2020). This process generates a heat map, high-
lighting significant areas of the image based on their contri-
bution to the prediction (see Figure 1) and need to know the
label of interest in order to generate the corresponding map,
thus performing a localisation task with cues. Deep Features

factorisation (DFF) is a method capable of localizing similar
semantic concepts within an image (Collins et al., 2018). This
method is significant because, unlike Grad-CAM, it obtains lo-
cation information without requiring any cues of the label of
interest, thus enabling simultaneous localisation and categori-
sation (see Figure 1)

From Label map to Likelihood and Information Gain
maps
Here we propose a general framework to locate an object of
interest, with or without label, based on CNNs categorisation
(here Resnet networks (He et al., 2015)). We generate a grid
of 7×7 fixation points to match the native resolution of Grad-
Cam and DFF methods. Thus for a given image, the corre-
sponding batch produces a 7× 7× 1000 tensor (the ‘label”
map), where the last dimension represents the 1000 labels of
the ImageNet Challenge (Russakovsky et al., 2015). The ten-
sor can then be processed to keep the vectors corresponding
to the label of interest to produce a 7×7×1 tensor. For each
position u, a hypothesis is formed (inferred) about the visual
content of the view. This hypothesis takes the form of a prob-
ability distribution p(k|xu), which assigns a probability to each
label k ∈ 1, . . . ,K, such that ∑k p(k|xu)= 1. The logit output of
the network f is classically interpreted as a log-probability, so
that f (xu)≡ log p(·|xu). This probability can be interpreted as
a confidence score for each label, indicating how certain the
network is about its prediction. Two scenarios can arise:

• If the label is known (the “visual search” task), the target
label k∗ is known in advance, hence it is possible to extract,
for each position u, the probability p(k∗|xu) ∈ [0,1], indicat-
ing, for each view, the likelihood that the network identifies
the object at that position. The set of views thus produces a
likelihood map L∗(u), assigning a score to the target label
at each spatial position (see Figure 1).

• If the label is not known in advance, two approaches can
be considered:

– The most direct extension of the previous method is to
select the label with maximum logit score for each posi-
tion u (see Equation 1).

L(u) = argmax
k

logit(p(k|xu)) (1)

– In the framework of active inference, it has been pro-
posed (see Daucé (2018); Daucé & Perrinet (2020)) to
consider the information gain as a measure of the rel-
evance of a view, relative to the initial glimpse of the
scene, denoted x0. This information gain is defined as
the reduction in uncertainty regarding the interpretation
of the scene, for each possible view. It has been shown
that the information gain can be upper-bounded (up to a
constant) which is much simpler to compute (see Equa-
tion 2).

IGUB(u)≡ ∑
k

p(k|x0,xu) log p(k|xu) (2)



This value reflects an optimistic bias on the information
gain, and is equivalent to combining a consistency term
(the IG) and a discovery term (KL divergence of the pos-
terior update), also known as the “Bayesian surprise” (Itti
& Baldi, 2009).
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Figure 2: Visual search Average accuracy when processing
all images from the ImageNet validation data set (only im-
ages with bounding box ground truth, approximately 98% of
the 50,000 images). (Blue): Average accuracy for all images
(centered viewpoint). (Red): Average accuracy at the most
salient viewpoint for the corresponding saliency map. (Black):
Average Pointing Game scores (a measure of correct local-
isation when the most salient point falls within the bounding
boxes provided with the ImageNet data set) for the corre-
sponding method. Top row represent the label-driven visual
search methods while the bottom row represent the uncued
visual search methods

Results
Label-driven visual search
First, we study the contribution of localisation when the label
of interest is known (with cue). Contrary to expectations, when
relying on the Grad-Cam method to determine the position of
the next saccade accuracy increases only slightly (from 77.2%
to 80.3%), despite very accurate localisation (with 87.75%
of the most salient points falling within the bounding boxes).
However, when selecting the most salient point from the like-
lihood map, the network’s accuracy increases substantially
(from 77.2% to 94.2%), even though the localisation appears
less accurate compared to Grad-Cam. While this measure
comes with a caveat, since our methods already involve the
networks “exploring” all possibilities to make a decision, the
result remains significant as it demonstrates that there ex-
ists an optimal viewpoint within the scene that can elevate
the networks’ accuracy to a competitive level (see Figure 2
top). We also evaluated a shallower network: RESNET-18, al-
though it started with weaker categorisation performance (i.e.,

61.3% accuracy), when the highest saliency point was used,
the accuracy rose above expectations (i.e., 87.8% accuracy,
see Figure 2 top).

Uncued visual search
Here we investigate whether saliency maps for categorisation
can be obtained by a method that does not rely on the la-
bel of interest, without cue. Surprisingly, when using the DFF
method, post-saccadic accuracy decreases compared to pre-
saccadic accuracy (i.e., from 77.2% to 75.1%). When using
a likelihood map method, if we simply use the most salient
point among all fixation points and all labels, categorisation
performance is also degraded (i.e., from 77.2% to 73.4%).
However, if we rely on the IGUB to select the best position,
post-saccadic accuracy increases significantly (from 77.2% to
79.6%). Although the Information Gain maps show better ac-
curacy than the DFF, they remains still far from the optimal
accuracy (i.e., 94.2%). In contrast, the pointing game score
(i.e. localisation) remains lower in the IGUB than in the DFF,
illustrating again a subtle trade-off between both objectives
(see Figure 2 bottom).

Discussion
The aim of this study was to explore the relationship between
localisation and categorisation, with the ultimate goal of iden-
tifying the optimal viewpoint at which a given network’s cate-
gorisation accuracy is maximised (i.e. 94.2% for the ResNet-
101 network). This is even more notable given that shal-
lower networks tend to be more competitive at this position
(i.e. 87.8% for the ResNet-18 network). Various CAM-based
methods can efficiently identify a label of interest. However,
many of these locations do not achieve the maximum classifi-
cation rate. The challenge lies in determining the optimal gaze
location when the label of interest is unknown, with the aim of
achieving the maximum classification rate. Once again, pure
localisation methods, such as the DFF, struggle to maintain
decent categorisation accuracy, although they do provide cor-
rect localisation scores. Here, we present an initial adaptation
of the Information Gain framework for visual search on natural
images. These methods are crucial for enhancing the classifi-
cation rate and are the only ones that can improve accuracy by
2–3% in this study when the sensor is positioned correctly and
there is no prior knowledge. The phenomenon of misalign-
ment between classification and localisation observed in this
study may be due to various factors, including the perception
that an object of interest in a visual scene is in a ’winner takes
all’ competition with other objects present (Lee et al., 1999).
This effect is even more pronounced in natural scenes, where
the background can resemble the object of interest. Classi-
cal and contemporary findings — from goal-directed atten-
tion (Yarbus, 1961) to target-absent search behaviour (Yang
et al., 2022) — highlight the importance of understanding how
humans explore visual scenes. Further exploration of this ’op-
timal’ fixation point could deepen our understanding of the
clustering effect and clarify the features on which the CNN
architecture relies for categorisation.
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