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Abstract

Distinguishing animate from inanimate things is impor-
tant for object recognition behaviour and animate and
inanimate objects elicit distinct brain and behavioural re-
sponses. A recent study evaluated the importance of
five object dimensions related to animacy (“being alive”,
“looking like an animal”, “having agency”, “having mobil-
ity”, and “being unpredictable”) in brain representations
and similarity-judgement behaviour. The study intro-
duced a stimulus set that decorrelated these dimensions
based on human ratings. Here, we ask: 1) to what ex-
tent one of the best computational models of vision (Con-
trastive Language-lmage Pre-Training (CLIP) RN50) can
predict dynamic human brain (EEG) and similarity judge-
ment responses to this stimulus set and 2) what unique
variance is explained by each animacy dimension ratings
and CLIP. We find that CLIP explains a unique portion of
the variance of similarity judgements, and a similar total
amount of the variance as human ratings for each of the
animacy dimensions. EEG responses are also predicted
by animacy dimension ratings and CLIP to a similar ex-
tent. However, CLIP explains a unique portion of this
variance at short latency (140-196 ms after stimulus on-
set), whereas “looking like animal” dimension rating ex-
plains unique variance at longer latency (239-301 ms after
stimulus onset). We conclude that both human-generated
multi-dimensional animacy ratings and the CLIP model
explain unique components of visual representational dy-
namics and similarity-judgement behaviour and provide
insights about specific dimensions of animacy that need
to be better captured in future computational models of
brain function and behaviour.

Introduction

Animate and inanimate objects elicit distinct brain
(Kriegeskorte et al., 2008; Cichy, Pantazis, & Oliva, 2014)
and behavioural (Mur et al., 2013) responses. Five object
dimensions related to animacy were reported in the literature:
“being alive” (Connolly et al., 2012), “looking like an animal”
(Bracci, Ritchie, Kalfas, & Op de Beeck, 2019), “having
agency” (Thorat, Proklova, & Peelen, 2019), “having mobility”
(Beauchamp, Lee, Haxby, & Martin, 2002), and “being
unpredictable” (Lowder & Gordon, 2015)). A recent study
created a stimulus set decorrelating these dimensions as
much as possible based on each dimension human ratings,
and evaluated the importance of each of these dimensions
in brain and behaviour (Jozwik et al., 2022). Here we extend
this work by modelling. First, we wanted to know to what
extent one of the best (Conwell, Prince, Kay, Alvarez, &
Konkle, 2024) computational models of vision (Contrastive
Language-Image Pre-Training (CLIP) RN50 (Radford et al.,
2021)) can predict dynamic brain (EEG) and behavioural
(similarity judgements) responses to this carefully designed
stimulus set (Figure 1). Secondly, we asked what unique
variance is explained by each animacy dimension rating and

CLIP to understand what information about visual brain and
behavioural representations may be missing in computational
models and behavioural animacy ratings.

Figure 1: The genetic-algorithm driven stimulus set consisted
of 128 images decorrelated on five dimensions of animacy.

Methods and Results

The same 19 subjects participated in EEG (stimulus presenta-
tion duration: 500 ms, inter-trial interval: 1-1.1 s) and similar-
ity judgements experiments (details of the stimulus generation
and experimental design can be found in Jozwik et al. (2022)).
We computed response patterns (across animacy dimension
ratings, similarity judgements, EEG signals, and CLIP layers)
for each image. We then computed response-pattern dissim-
ilarities between images (using Euclidean distance as a met-
ric) and placed these in a representational dissimilarity ma-
trix (RDM). We correlated each animacy dimension rating and
the best CLIP layer (for the EEG and similarity judgements
data it is visual layer 4) with the data. We find that CLIP ex-
plains similar amount of variance in similarity judgements as
compared to each animacy dimension rating (Figure 2) and
explains unique portion of this variance (Figure 3). EEG re-
sponses are also predicted by animacy dimension ratings and
CLIP to a similar extent (Figure 4), however CLIP explains
unique portion of this variance at short latency (140-196 ms
after stimulus onset), whereas “looking like animal” dimension
rating explains unique variance at longer latency (239-301 ms
after stimulus onset, Figure 5). We conclude that both human-
generated animacy ratings and computational model explain
unique components of visual representational dynamics and
behaviour.

Discussion

Our findings are consistent with previous work showing that
human-generated labels and DNNs explain unique variance
in source-reconstructed MEG data (Jozwik, Kietzmann, Ci-
chy, Kriegeskorte, & Mur, 2023). The high performance of
CLIP here is consistent with it predicting brain representa-
tions well (Conwell et al., 2024) using the 7T fMRI Natural
Scenes Dataset (NSD, Allen et al. (2022)). An interesting fu-
ture avenue is to test whether findings based on the unique



and carefully designed dataset used in this study would gen-
eralize to larger publicly available datasets such as NSD or
THINGS (Hebart et al., 2023). Finally, these results provide
insights about specific dimensions of animacy that need to be
better captured in future computational models of brain func-
tion and behaviour.
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Figure 2: Animacy dimension RDM comparisons with similar-
ity judgements RDMs (significant correlation - asterisk (one-
sided Wilcoxon signed-rank test, p < 0.05 corrected), er-
ror bars - the standard error of the mean based on single-
participant correlations, circles - single-participant correla-
tions, horizontal lines - significant pairwise differences be-
tween model performance (p < 0.05, FDR corrected across
all comparisons).
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Figure 3: Unique variance of each animacy dimension in ex-
plaining similarity judgements using the same visual conven-
tions as in Figure 2.
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Figure 4: Animacy dimension RDM and CLIP comparison with
EEG RDMs across time (lines - correlation between the EEG
RDMs and each animacy dimension RDM, horizontal line
above the graph - significant correlation (one-sided Wilcoxon
signed-rank test, p < 0.05 corrected), grey horizontal bar on
the x-axis - stimulus duration.
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Figure 5: Unique variance of each animacy dimension and
CLIP in explaining EEG RDMs computed using a GLM using
the same visual conventions as in Figure 4.
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