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Abstract1

Electroencephalography is key for clinical and cognitive2

research, yet limited data availability restricts deep learn-3

ing (DL) applications. This study compares thee upsam-4

pling techniques in convolution-based Generative Adver-5

sarial Networks – transposed convolutions (TC), inter-6

polation with convolutions (IC), and a mixed approach7

– that are used to transform noise vectors into artifi-8

cial EEG data. We evaluate artificial signal quality with9

EEG-specific metrics across time, frequency, and spa-10

tial domains. Kolmogorov–Smirnov tests indicate that the11

mixed approach mitigates the high-frequency noise com-12

monly introduced by TC, while better preserving lower-13

frequency components and inter-channel dependencies14

than IC. Moreover, the findings underline the importance15

of EEG-specific evaluation metrics for guiding the devel-16

opment of more explainable and efficacious generative17

models, advancing DL applications in neuroscience.18

Keywords: Generative Adversarial Network; electroen-19

cephalography; data augmentation; convolutional neural net-20

work; evaluation21

Introduction22

In principle, electroencephalography (EEG) data is promising23

for addressing clinical and cognitive questions. However, dif-24

ficulties collecting sufficient within- and between-participant25

EEG data hinder the use of powerful deep learning methods.26

One way to tackle this issue is by augmenting the data with27

artificial samples. Generative Adversarial Networks (GAN)28

have become the gold standard for EEG data augmentation29

(Habashi et al., 2023). However, the convolution-based gen-30

eration process introduces systematic high-frequency noise31

into the generated EEG data (see Figure 1b).32

Convolutional neural networks (CNN) are the most common33

architecture for GANs in EEG research (Habashi et al., 2023).34

A CNN can generate complex, high-dimensional data by it-35

eratively upsampling and transforming an unstructured, low-36

dimensional noise vector. This upsampling process allows the37

model to refine the intermediate feature maps step-by-step,38

learning a hierarchical representation that mirrors the target39

data structure. The most common upsampling method in40

CNN-based GANs uses transposed convolutions. Transposed41

convolutions upsample and transform an intermediate feature42

map simultaneously. Unfortunately, this upsampling method43

introduces high-frequency artifacts into the generated EEG44

data – an issue rarely addressed in the literature (Habashi45

et al., 2023).46

Odena, Dumoulin, & Olah (2016) designed a convolution-47

based upsampling method to avoid the high-frequency noise48

introduced by transposed convolutions. In this approach, the49

upsampling is separated from the computation of features. An50

intermediate feature map is upsampled by a non-parametric51

interpolation layer and then transformed by one or more con-52

volutional layers. However, interpolations are averaging op-53

erations, introducing a ”smoothness bias” into the generated54

Figure 1: Comparison of the average trial (channel P08) for
the (a) Transposed-Convolutions (TC), (b) Interpolation-and-
Convolutions (IC), and (c) Mixed models. The model data
(blue) is plotted on top of the target data (red) for compari-
son.

data. Although the subsequent convolutions counteract this55

bias, the generated data commonly has degraded amplitudes56

(Hartmann, Schirrmeister, & Ball, 2018).57

Panwar et al. (2020) proposed a model alternating between58

the two upsampling methods. They showed that the mixed59

upsampling method outperformed the individual upsampling60

methods. However, they relied on a global metric for compar-61

ing the models, which provides no information on how the data62

generated from different models differs.63

This study has two goals. First, we compare three up-64

sampling methods for convolution-based GANs for generat-65

ing EEG data: (1) transposed convolution and (2) interpola-66

tion and convolutions. We demonstrate that combining both67

upsampling methods leads to a more accurate reproduction68

of the target data in the frequency domain. Second, while69

most research in this field relies on global metrics, we pro-70

pose EEG-specific metrics in the time, frequency, and spatial71

domains to evaluate artificially generated EEG data. EEG-72

specific metrics yield more fine-grained, and thus, actionable73

insight. This constitutes an important step towards building74

more explainable, generalizable, and efficacious generative75

models for EEG data in the future.76

Methods77

We used EEG data from Jin, Borst, & van Vugt (2019), re-78

stricting ourselves to channels Fz, Pz, P07, and P08. Par-79

ticipants performed a Go/No-Go task, responding to frequent80

lowercase words (non-targets) and withholding responses to81

rare uppercase words (targets). We used only target trials to82

keep the data relatively simple, yielding 5,568 trials.83



Table 1: Comparison of features between (a) target data and data generated by (b) Interpolation-and-Convolutions (IC), (c)
Transposed-Convolutions (TC), and (d) Mixed models. Values are reported as means with standard deviations (M ± Std).
Reported p-values are from KS tests comparing each generated distribution to the target. Correlations with significant deviations
in at least one model are shown. Statistically significant deviations are indicated by * (p < 0.05) and ** (p < 0.01).

Target IC TC Mixed
M±Std M±Std p M±Std p M±Std p

Time
P3L 443±96 453±98 0.59 437±91 0.58 449±95 0.87
P3A 24.5±11.7 26.2±11.5 0.53 23.9±11.3 0.89 25.0±11.4 0.83

Frequency

SEn 3.33±0.40 3.41±0.34 < 0.01∗∗ 3.41±0.37 0.01∗ 3.38±0.39 0.14
SEnT 1.69±0.12 1.70±0.12 0.20 1.69±0.12 0.88 1.69±0.11 0.96
SEnA 1.76±0.15 1.82±0.12 < 0.01∗∗ 1.77±0.13 0.24 1.77±0.13 0.17
SEnB 3.04±0.16 3.03±0.17 0.35 3.07±0.13 0.01∗ 3.05±0.13 0.34

Space
Fz - Pz 0.61±0.23 0.59±0.16 0.04∗ 0.58±0.21 0.32 0.63±0.19 0.45
Fz - P08 0.27±0.27 0.34±0.20 0.03∗ 0.24±0.25 0.63 0.36±0.22 0.03∗

Pz - P07 0.70±0.17 0.63±0.14 < 0.01∗∗ 0.68±0.16 0.57 0.72±0.14 0.38

We built three models to compare the upsampling methods84

used in GAN generators for EEG data. These models differed85

only in the composition of the four upsampling blocks they em-86

ployed in their generators: (1) transposed convolution (TC),87

(2) interpolation and convolutions (IC), and (3) alternating be-88

tween them (Mixed). We adapted these models from Panwar89

et al. (2020).90

To assess the quality of the generated data, we picked mea-91

sures in the time, frequency, and spatial domain and deter-92

mined them for each EEG trial. We compared the generated93

and target distributions on each metric using Kolmogorov-94

Smirnov (KS) tests. The KS test determines if two samples95

follow the same distribution function (Berger & Zhou, 2014).96

For the time domain, we determined the P3 peak amplitude97

(P3A) and latency (P3L) as the maximum voltage between 25098

and 600 ms after stimulus onset at Pz to measure a model’s99

ability to capture global features of an EEG signal. For the100

frequency domain, we computed the spectral entropy for the101

full frequency range (SEn) as well as for the frequency bands102

theta (4-8 Hz; SEnT ), alpha (8-13 Hz; SEnA), and beta (13-103

30 Hz; SEnB). SEn quantifies the degree of randomness in a104

signal’s frequency content by measuring the spread of power105

across a frequency range (Inouye et al., 1991). For the spatial106

domain, we computed by-trial correlations for every channel107

pair.108

Results109

Figure 1 displays the average signal for channel P08 per110

model. While models captured the overall trajectory of the111

target EEG data, the IC model exhibited the closest resem-112

blance, with minimal residual noise. In contrast, the TC and113

Mixed models introduced systematic high-frequency noise.114

Table 1 presents the quantitative results, contrasting each115

feature’s distribution between the generated and the target116

EEG data. In the time domain, none of the models yielded dis-117

tributions that differed significantly from the target data, with118

high p-values (p > 0.50). By contrast, in the frequency do-119

main, the TC and the IC model significantly deviate from the120

target SEn for the full frequency range (p= 0.01 and p< 0.01,121

respectively). Furthermore, whereas the IC model failed to122

capture the SEnA (p < 0.01), the TC model failed to capture123

the SEnB (p = 0.01). Spatially, only the TC model captured124

all correlations, while the IC model significantly deviated from125

the target data in three channel pairs.126

Discussion127

This study contributes to the existing literature in two main128

ways. First, it proposes a set of EEG-specific metrics to holis-129

tically evaluate the quality of generated EEG data in the time,130

frequency, and spatial domain. These measures provide ac-131

tionable insights, allowing targeted steps to improve a gener-132

ative model. Second, it contrasted two upsampling methods133

commonly employed in convolution-based Generative Adver-134

sarial Networks (GAN): transposed convolution and interpola-135

tion followed by convolutions. Our results indicate that a mixed136

method – alternating between the two upsampling methods –137

is generally advantageous, preserving the target data’s fre-138

quency content and mitigating high-frequency noise. How-139

ever, this comes with a trade-off in spatial accuracy, which is140

best captured by transposed convolution alone141
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