Probabilistic representations fail to emerge in task-optimized neural networks

Abstract

While mounting evidence indicates that human decision-
making follows Bayesian principles, the underlying neu-
ral computations remain unknown. Recent work pro-
poses that probabilistic representations arise naturally
in neural networks trained with non-probabilistic objec-
tives (Orhan & Ma, 2017). However, prior analyses did
not explicitly examine whether the neural code merely
re-represents inputs or performs useful transformations
that prioritize three criteria for a probabilistic represen-
tation: generalization, invariance, and representational
simplicity (Walker et al., 2023; Pohl et al., 2024). Us-
ing a novel probing-based approach, we show that train-
ing feed-forward networks to perform cue combination
and coordinate transformation without probabilistic ob-
jectives leads to Bayesian posteriors being decodable
from their hidden layer activities. However, we also show
that these networks fail the generalization, invariance and
representational simplicity criteria: they do not general-
ize out-of-sample, compress their inputs, or develop eas-
ily decodable representations. Therefore, it remains an
open question under what conditions truly probabilistic
representations emerge in neural networks.
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Background

In an uncertain world, the best way to make decisions is by
using the rules of probabilistic inference; experimental evi-
dence suggests that humans make perceptual decisions in
exactly this way (Ernst & Banks, 2002; Kording & Wolpert,
2004). Competing theories about how the brain implements
such inference strategies propose that neural activities ei-
ther represent a parametric form of a probability distribution
(e.g., probabilistic population codes, distributed distributional
codes) or represent samples from it (i.e., neural sampling
codes) (Haefner, Beck, Savin, Salmasi, & Pitkow, 2024). How-
ever, testing these theories in neural data and distinguishing
between their disparate predictions remains an ongoing chal-
lenge.

Recent work has suggested that neural networks develop
internal representations of posteriors even without explicit
probabilistic objectives (Orhan & Ma, 2017). This would sug-
gest that probabilistic representations emerge naturally when
learning to behave optimally under uncertainty. However, pre-
vious decoding approaches (Orhan & Ma, 2017; Walker, Cot-
ton, Ma, & Tolias, 2020) only assessed whether posteriors
were decodable from neural activity, i.e., the specificity of the
neural code, without testing whether these representations fil-
ter irrelevant input information, i.e., invariance. Thus, these

methods could not distinguish truly probabilistic representa-
tions from ftrivial re-representations of inputs. Here, we for-
malize this distinction through a novel information-bottleneck
(Tishby, Pereira, & Bialek, 2000) requirement: a network’s in-
ternal representation should maximize information about rele-
vant posteriors while minimizing information about inputs. The
underlying insight is that task-relevant posteriors should be
decodable from the hidden layer activities of a network that
uses posterior uncertainty to behave optimally, but if inputs are
also decodable, the network is not meaningfully transforming
those inputs into a usable code for downstream computations.
Additionally, Orhan and Ma (2017) tested generalization in a
limited capacity: while their networks pass Bayesian transfer
in an interpolation setup, they crucially do not examine out-
of-sample extrapolation, which we investigate herein. Finally,
we assess the representational simplicity of these probabilistic
representations to determine whether flexible networks form
internal representations that improve downstream decodabil-

ity.

Methods

Following Orhan and Ma (2017), we trained “performer” net-
works to optimally perform either cue combination or coordi-
nate transformation without probabilistic objectives. Networks
consisted of an input layer divided into two populations, each
with 50 independent Poisson neurons that had Gaussian tun-
ing curves whose gain g; was population-dependent and var-
ied trial-by-trial, a single hidden layer with 200 neurons (and
ReLU activations), and a final linear readout “layer” of a single
neuron. The activities of the input populations constituted the
observations (“cues”) based on which the networks needed
to compute their outputs. In cue combination, both popula-
tions were driven by the same latent stimulus s, which the
network had to estimate based on the input layer activities.
In coordinate transformation, each population was driven by
a different s; and the network had to optimally estimate the
sum of the two latent stimuli s7 = s; + sp — a more difficult
task considering the network must marginalize out s; and s;
(Ma, Beck, Latham, & Pouget, 2006; Beck, Latham, & Pouget,
2011). The gain of the input populations was considered a nui-
sance variable that the networks had to marginalize out. We
also constructed two control networks, one that trivially copied
inputs to the hidden layer (COPY) and one that constructed a
probabilistic population code (PPC) representation in its hid-
den layer. In these control networks, only hidden-to-output
weights were trained.

Training Performers were trained with mean squared error
loss and stochastic gradient descent (Adam optimizer). Dur-
ing training and testing, we varied the degree of "Bayesian
transfer” (Orhan & Ma, 2017). In the "all gains” condi-
tion, networks were trained and tested on all gain combina-
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Figure 1: A) Information plane analysis for both tasks (Cue Combination and Coordinate Transformation) and training conditions
(values of 62). In each panel, learning trajectories are plotted for all three weight initializations, and scatter plots represent test
batches at different stages of learning; scatter plots are colored according to the network performance at that stage of learning
(in Frac. RMSE). We show two horizontal calibration curves, the top representing the amount of information in the prior and
the bottom representing the performance of a suboptimal network that does not explicitly encode uncertainty but instead learns
to shift a posterior of fixed width to match the posterior mean. B) Representational simplicity analysis for all tasks and training
conditions. Panels are colored similarly to A). Dashed line represents unity of simple and complex decoder performance.

tions (g1,82) with g1,82 € G = {0.25,0.5,0.75,1,1.25}, as
in Orhan and Ma (2017). For the "Bayesian interpolation” and
"Bayesian extrapolation” conditions, networks were trained
on a subset of G and tested on the remainder of the set:
81,82 € {0.25,1.25} and g1, g> € {0.25,0.5}, respectively.
We also varied the degree of richness in the training dynam-
ics (Flesch, Juechems, Dumbalska, Saxe, & Summerfield,
2021; Farrell, Recanatesi, & Shea-Brown, 2023) by initializ-
ing all networks with zero-mean Gaussian-distributed weights
and varying the variance 6> € {0.01,0.1,1}. Richer learning
corresponds to well-structured representational learning and
occurs when network weight initializations are small, whereas
lazy learning leads to less structured, high-dimensional repre-
sentations and occurs for relatively large weight initializations.
We trained (also with Adam) two types of “interpreter” net-
works — posterior probes and input decoders — to assess the
structure of the internal representations in the performer net-
works. Posterior probes were 2-layer ReLU networks trained
(with a KL divergence loss) to decode a discretized version of
the ground truth posterior distribution (which was analytically
computable from input layer activations) from the performer’s
hidden layer activations. We also trained a second kind of
probes to determine whether hidden layer activations specif-
ically represented uncertainty in an easily decodable format.
Specifically, these probes were trained (with a mean squared
error loss) to simply decode the posterior variance (a scalar)
from the performer’s hidden layer activations, rather than the
full posterior. This allowed us to compare the performance
of a simple linear and a nonlinear variance probe; the linear
probe had no hidden layer, while the nonlinear probe had two
200-neuron hidden layers with ReLU activations. Finally, in-
put decoders were high-capacity ReLU networks (two 300-
neuron hidden layers) trained to reconstruct the performer’s
input layer activations from its hidden layer activations, and

they were trained with negative log-likelihood loss.

Results

Our information-bottleneck analysis reveals that none of the
performer models, regardless of task or training conditions,
compress information adequately, especially compared to an
optimal PPC representation of the same information (Figure
1A); in fact, most networks tend to approximate the COPY
network, retaining most of the information about the inputs.
Learning dynamics in the rich regimes exhibit some early-
stage compression for the coordinate transformation task, but
the compressive code is quickly discarded in favor of improved
posterior decodability. Notably, none of the networks exhibit
the two-stage (fitting and compression) information plane tra-
jectories observed in Schwartz-Ziv and Tishby (2017) despite
being trained with stochastic gradient descent, with the find-
ings of Saxe et al. (2019). Additioanlly, Bayesian transfer in
the extrapolation training regime reveals that networks do not
generalize well in all conditions — for the extrapolation condi-
tion, networks were not able to consistently surpass the cal-
ibration curve representing optimal decoding of the posterior
mean with a fixed posterior uncertainty.

Figure 1B presents the results of our representational sim-
plicity analysis. We expected that if a network’s internal repre-
sentation can transform a neural code to make relevant poste-
riors more easily decodable by downstream layers, then a sim-
ple linear posterior probe’s performance should approach that
of a high-capacity nonlinear probe over the course of learning
(i.e., approaching the diagonal dashed line in Figure 1B). We
find that this is not necessarily the case: though lazy-regime
linear probes appear to linearize their code somewhat, rich-
regime linear probes do not consistently improve their perfor-
mance relative to the COPY network.
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