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Abstract

Eye movements are core to how humans perceive their
environment, which is why understanding which proper-
ties guide fixations can help us better understand visual
perception. Although there are many computational mod-
els trying to predict eye movements, they mostly aim to
maximize performance without offering insights into why
certain image regions draw our gaze. We addressed this
question by leveraging 49 representational object dimen-
sions that capture visual and semantic object information
to predict human fixations on images. We weighted these
dimensions with their relevance for an image to generate
behaviorally-relevant feature maps, without specifically
training on fixation data. Our approach outperformed a
permutation-controlled baseline and matched the perfor-
mance of a saliency model. Crucially, our predictions
are interpretable, offering insights into which represen-
tational dimensions drive them. Lastly, we showed how
predictive individual dimensions are of fixation in general
which helps us better understand which features drive
gaze allocation.
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Introduction

Our visual world is made up of complex scenes composed of
multiple objects. Overt attention is the mechanism by which
humans fixate on important aspects of a visual scene to ef-
ficiently sample information from their environment (Posner,
1980). Researchers have long tried to predict where people
will fixate in an image to infer how we visually sample infor-
mation (Itti, Koch, & Niebur, 2002). While such models have
progressed a lot in recent years, achieving remarkable accu-
racy (Linardos, Kümmerer, Press, & Bethge, 2021), they offer
little insight into why certain regions draw our gaze more than
others.

To bridge this gap, we used the core visual and semantic
dimensions underlying perceived object similarity identified by
Hebart, Zheng, Pereira, and Baker (2020). These dimensions
were derived from behavioral responses to a similarity task
on images from the THINGS database (Hebart et al., 2019,
2023). The authors trained a sparse non-negative embedding
model to predict object similarities, yielding 49 interpretable
object dimensions reflecting the information participants used
to distinguish between objects. These dimensions have been
demonstrated to be predictive of basic object behavior includ-
ing categorization and typicality (Hebart et al., 2020) as well
as memorability (Kramer, Hebart, Baker, & Bainbridge, 2023)
and are predictive of responses in early and high-level visual
cortex (Contier, Baker, & Hebart, 2024), underscoring their im-
portance for our mental and cortical representation of objects.
In this project, we use these dimensions to generate inter-
pretable predictions of human fixations that help us shed light
on the core objects dimensions influencing gaze behavior.

Figure 1: A Shows how SPoSE feature maps are extracted
and combined into behaviorally-relevant SPoSE maps used
for fixation prediction. B Examples of saliency models cre-
ated by the different models, including a depiction of the most
relevant SPoSE dimensions for each image.

Methods
While the method by which the SPoSE dimensions are
learned is not inherently image-computable, Kaniuth, Mahner,
Perkuhn, and Hebart (2024) created a model (Dimpred) that
is able to predict SPoSE dimension scores for any natural im-
age. The model extracts DNN activations from CLIP-ResNet
in response to an image and then linearly maps them to the
49 interpretable SPoSE dimensions. The model is trained on
a set of images for which the SPoSE embedding was com-
puted based on similarity-judgements but it generalizes well
to unseen images. The authors also utilized the interpretabil-
ity method RISE (Petsiuk, Das, & Saenko, 2018), which can
generate dimension-specific saliency maps for each image.
This method repeatedly occludes parts of the input image us-
ing randomly generated masks to observe the effect on the
predicted dimensions. Thus, it can compute a dimension-
specific relevance score for each image region to generate
feature maps that indicate where a certain dimension is rep-
resented on the input image.

These feature maps allow us to look at the distribution of an
object dimension across an image, which is why they offer an
ideal way to assess how these key visual and semantic dimen-
sions are mirrored in where humans will fixate. Specifically, we
hypothesized that the same features that are relevant for mak-
ing similarity judgments of images might also be reflected in
where on an image we fixate. To generate such an integrated



map, we weighted the feature map for each dimension with the
associated SPoSE dimension score generated by Dimpred to
create a ”behaviorally-relevant” feature map (Kaniuth et al.,
2024), as depicted in Figure 1A.

Results

Predicting fixations

We first tested this approach on images from the THINGS+
dataset (Stoinski, Perkuhn, & Hebart, 2022) which contains
1854 images depicting all the broadly sampled image con-
cepts of the THINGS dataset (Hebart et al., 2019), making
it a suitable candidate for addressing how object dimensions
influence fixation patterns. As a proxy for empirical fixations,
we generated fixation maps using the DeepGaze IIE model
(Linardos et al., 2021), the state of the art model to simulate
fixation patterns. To assess how well our SPoSE maps predict
the DeepGaze fixation maps, we used a range of commonly
used metrics for measuring the similarity between saliency
heatmaps and fixation maps (Bylinskii, Judd, Oliva, Torralba,
& Durand, 2016; Judd, Durand, & Torralba, 2012). To con-
trol for biases (e.g. centerbias) of the dataset, that are in-
dependent of the image, we performed a permutation control
where for each fixation map a fixation map from another ran-
dom image is used as a predictor (Koehler, Guo, Zhang, &
Eckstein, 2014). In addition, we assessed the revised Itti &
Koch saliency model implemented by Harel, Koch, and Per-
ona (2006). In general, our model performed much better than
the permutation control and was comparable with the saliency
model 1. To assess how well our model generalizes to other
images, we replicated these results with the MIT1003 dataset,
containing images with fixation maps of 1,003 natureal scenes
(Judd, Ehinger, Durand, & Torralba, 2009) (Table 2).

Table 1: Performance on THINGS+ Dataset

AUC- AUC- AUC-
Judd ↑ SIM ↑ Borji ↑ shuf ↑ CC ↑ NSS ↑

SPoSE 0.81 0.81 0.76 0.66 0.56 1.45
Itti & Koch 2 0.81 0.74 0.79 0.68 0.59 1.44
Perm.-control 0.68 0.78 0.65 0.50 0.37 0.64

Table 2: Performance on MIT1003 Dataset

AUC- AUC- AUC-
Judd ↑ SIM ↑ Borji ↑ shuf ↑ CC ↑ NSS ↑

SPoSE 0.78 0.50 0.77 0.61 0.53 1.22
Itti & Koch 2 0.77 0.49 0.76 0.62 0.43 1.11
Perm.-control 0.68 0.34 0.68 0.50 0.20 0.49

Importantly, our model also shows which SPoSE dimen-
sions were involved in generating each prediction and their in-
dividual contribution to the behaviorally-relevant SPoSE map
(Figure 1B).

Contribution of individual dimensions
Lastly, to show how predictive each dimension is of fixations,
we assessed their individual performance in both datasets
Figure 2). We decided to use the shuffled AUC measure,
as it removes the center bias contribution (Kummerer, Wallis,
& Bethge, 2018). Both datasets showed a similar pattern of
predictive dimensions, indicating that some dimensions (e.g.
animal, fire, baby) draw our gaze more than others (e.g. flat
pattern, furniture, long). Some dimensions even seem to dis-
suade people from fixating (below-chance accuracy).

Figure 2: Relative predictive performance of individual dimen-
sions for THINGS+ and MIT 1003

Conclusion
Overall, these results show that the SPoSE dimensions can
provide critical information about the nature of the represen-
tations that may underlie eye movements on object images
and natural scenes. These results offer exciting new oppor-
tunities because they do not only predict fixation patterns, but
also allow for a more detailed examination of which object di-
mensions drive these predictions. In future projects, we aim
to explore how our prediction may be improved by weighing
different SPoSE dimensions. We also plan to validate our ap-
proach on additional datasets to uncover the central, general-
izable dimensions directing our gaze.
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