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Abstract1

Understanding convergent learning—the degree to which2

independently trained neural systems—whether multiple3

artificial networks or brains and models—arrive at sim-4

ilar internal representations—is crucial for both neuro-5

science and AI. Yet, the literature remains narrow in6

scope—typically examining just a handful of models with7

one data distribution, relying on one alignment metric,8

and evaluating networks at a single post-training check-9

point. We present a large-scale audit of convergent10

learning, spanning dozens of vision models and thou-11

sands of layer-pair comparisons, to close these long-12

standing gaps. First, we pit three alignment families13

against one another—linear regression (affine-invariant),14

orthogonal Procrustes (rotation-/reflection-invariant), and15

permutation/soft-matching (unit-order-invariant). We find16

that orthogonal transformations align representations17

nearly as effectively as more flexible linear ones, and al-18

though permutation scores are lower, they significantly19

exceed chance, indicating a privileged representational20

basis. Tracking convergence throughout training fur-21

ther shows that nearly all eventual alignment crystallizes22

within the first epoch—well before accuracy plateaus—23

suggesting it is largely driven by shared input statistics24

and architectural biases, not by convergence towards the25

final task solution. Finally, when models are challenged26

with a battery of out-of-distribution images, early layers27

remain tightly aligned, whereas deeper layers diverge in28

proportion to the distribution shift. These findings fill crit-29

ical gaps in our understanding of representational con-30

vergence, with implications for neuroscience and AI.31
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Introduction33

Deep Neural Networks (DNNs) are becoming indispens-34

able tools in neuroscience, for both predicting neural35

responses (Yamins et al., 2014), (Yamins & DiCarlo,36

2016), (Khaligh-Razavi & Kriegeskorte, 2014) or as mod-37

els for reverse-engineering algorithms of neural computa-38

tion (Schrimpf et al., 2018), (Schrimpf et al., 2020), (Cichy39

et al., 2016). This congruence invokes the necessity to gain40

a deep understanding of how DNNs learn to represent infor-41

mation. A core question in this domain is whether—and un-42

der what conditions—independently trained networks develop43

similar internal representations, and along which dimensions44

this convergence unfolds. Answering question along these45

lines of inquiry can help illuminate how architectural design,46

training objectives and input statistics give rise to emergent47

features, and whether any aspects of these representations48

are universal across architectural choices.49

Over the past decade, studies have shown that inde-50

pendently trained models often learn highly aligned feature51

sets—early convolutional layers reliably produce Gabor-like52

filters (Yosinski et al., 2014), and deeper layers exhibit sub-53

stantial correspondence when measured via methods such54

as CCA and its variants (Morcos et al., 2018; Raghu et al.,55

2017) CKA (Kornblith et al., 2019), RSA (Mehrer et al., 2020)56

and model stitching (Bansal et al., 2021). More recently,57

large-scale models appear to converge even across tasks and58

data modalities (Moschella et al., 2023), suggesting the ex-59

istence of a modality-agnostic, “Platonic representation” that60

transcends specific inputs (Huh et al., 2024). Yet, these find-61

ings leave open critical gaps: we lack fine-grained metrics62

to characterize the minimal transformations needed for align-63

ment; we know little about how and when representations64

align during training; and we do not understand how robust65

this convergence is under distributional shifts. In this work, we66

address these questions by evaluating representational align-67

ment along three key axes—across layers, over the course of68

training, and under out-of-distribution (OOD) inputs—using a69

suite of metrics with varying degrees of invariances to reveal70

the geometry and dynamics of convergence in DNNs.71

Results72

Consider a representational pair XXX i ∈ RM×Nx and XXX j ∈73

RM×Ny as responses to M unique stimuli, where Nx and Ny74

denote the number of units in each representation. We com-75

pare these under three mappings—permutation (and its ex-76

tension when Nx ̸= Ny, Soft-Matching), Procrustes and Lin-77

ear regression, by finding the optimal mapping MMM under each78

transformation. We then report the alignment as a pairwise79

correlation corr(XXX j, MMMXXX i). These metrics, ordered from80

strict to flexible, isolate alignment in tuning functions, geomet-81

ric shape and information content respectively.82

Convergence with Network Depth: Across independent83

seeds of the same architecture, alignment is highest in the84

early layers—known to extract universal, low-frequency fea-85

tures (e.g., edges, corners) (Rahaman et al., 2019; Bau et al.,86

2017; Zeiler & Fergus, 2014)—and gradually decreases with87

network depth, consistent across all three metrics (Fig. 1-A).88

Allowing more flexible mappings (Permutation → Procrustes89

→ Linear) yields marginal gains beyond Procrustes, indicat-90

ing that simple rotations capture most of the shared structure91

and additional degrees of freedom (e.g., scaling, shearing)92

contribute little. Since Procrustes is symmetric, these results93



Figure 1: Representational Alignment Across Network Depth, Training and Distribution Shifts. (A) Alignment score vs.
layer depth, showing stricter metrics yield lower scores (Linear > Procrustes > Permutation). (B) Layer-layer alignment using
Procrustes (Top) and Soft-Matching (Bottom) with maximums over rows (top) / columns (right) denoted in gray lines. (C)
Procrustes alignment over the first 10 ImageNet training epochs (lighter = earlier), with task performance. (D) Layer-wise
Procrustes alignment for within-distribution (WD) and 17 OOD datasets. Error bars denote standard error across (n = 17) OOD
sets. (E) Correlation between Procrustes alignment and task performance over normalized network depth.

highlight that convergent learning reflects a deep geometric94

similarity in feature organization across networks, not merely95

the ability of one network to predict another.96

97

Hierarchical Correspondence holds Across Metrics: Pre-98

vious studies have shown that, for architecturally identical net-99

works trained from different initializations, the most similar100

layer in one network to a given layer in another is the corre-101

sponding architectural layer (Kornblith et al., 2019). However,102

this finding has primarily been supported using affine-invariant103

metrics (e.g., CCA, SVCCA). We extend this result by showing104

that stricter metrics—such as Procrustes and soft-matching105

scores—also reveal the same hierarchical correspondence106

(Figs. 1-B), even when comparing networks with different ar-107

chitectures. This suggests that the hierarchical alignment of108

representations is a fundamental property of neural networks,109

robust to architectural differences. Moreover, our results show110

that both representational shape (Procrustes) and neuron-111

level tuning (Soft-Matching) follow similar alignment patterns,112

reinforcing the consistency of this hierarchical organization113

across different levels of representational analysis.114

115

Evolution of Convergence Over Training: We measure Pro-116

crustes alignment between independently trained ImageNet117

networks over the first ten epochs and found that the bulk of118

convergence occurs within the first epoch—well before appre-119

ciable task accuracy (Fig. 1-C). This rapid early convergence120

suggests that shared input statistics, architectural inductive bi-121

ases, and initial training dynamics are primary drivers of align-122

ment, rather than the final task-specific solution. Such find-123

ings stand in contrast to hypotheses such as the contravari-124

ance principle (Cao & Yamins, 2021) and task generality hy-125

pothesis (Huh et al., 2024), which attribute convergence to126

constraints imposed by the final, high-performance solution.127

These results are consistent with studies on the early train-128

ing phase that identify a rapid representational reorganization129

before meaningful task learning begins (Frankle et al., 2020).130

131

Convergence Across Distribution Shifts: We investigate132

the extent of within-distribution (WD) representational align-133

ment of ImageNet-trained DCNNs under 17 OOD variants of134

ImageNet (Geirhos et al., 2018) sharing ImageNet’s 16 coarse135

labels by computing layerwise Procrustes scores. Early con-136

volutional layers maintained alignment levels nearly identical137

to WD stimulus, whereas later layers exhibit amplified diver-138

gence under OOD conditions (Fig. 1-D). We attribute this to139

early layers encoding universal features (e.g., edges, corners)140

that generalize across distributions, while deeper layers repre-141

sent task-specific abstractions that are more sensitive to dis-142

tributional shifts. Further, we find that representational align-143

ment in deeper (but not earlier or middle) layers correlates144

with OOD classification accuracy (Fig. 1-E). These findings145

suggest that OOD stimuli can serve as an effective probe to146

differentiate model architectures in model–brain comparisons,147

and that selective fine-tuning of later layers can serve as a148

promising strategy for improving OOD generalization.149

Discussion150

This study fills critical gaps in our understanding of convergent151

learning, offering a comprehensive analysis of how represen-152

tational alignment between independently trained networks153

varies across network depth, training, and distribution shifts.154

We systematically explored how different alignment metrics—155

with varying levels of transformation invariance—capture rep-156

resentational similarities, providing a more nuanced view of157

convergent learning than previous work.158
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