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Abstract

Speech understanding in the human brain involves sev-
eral representational transformations: Air pressure fluc-
tuations become a time-frequency representation in the
cochlear; auditory cortex extracts speech-relevant units;
distributed networks extract amodal representations of
meaning and structure. Recent advances in speech and
language models have led to a series of studies using
text-based large language model (LLM) representations
to model these neural transformations. Here we exam-
ine the brain’s end-to-end processing of language by ex-
tending the investigation to include biophysical models of
the cochlear and auditory cortex, as well as performance-
optimized models of speech (Whisper) and text (GPT-2,
Llama-3). We use these models to predict the activity of
spatially precise neural populations recorded via intracra-
nial EEG (iEEG) as participants listened to audiobooks.
Our findings are twofold. First, we observe clear differ-
ences in encoding performance within both auditory and
language model families. Second, each model type cap-
tures distinct aspects of the signal in temporal lobe elec-
trodes, suggesting that these regions encode a mixture of
intermediate auditory and higher-level semantic features.
Together, these results highlight the importance of exam-
ining model-brain alignment with fine-grained temporal
precision.
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Introduction

Large Language Models (LLMs) have shown high repre-
sentational similarity to language-evoked neural responses
(Schrimpf et al., 2021; Caucheteux & King, 2022; Goldstein
et al., 2022; Tuckute et al., 2024). Likewise, state-of-the-
art speech-based models have demonstrated high encoding
performance in auditory and speech-selective brain regions
(Millet et al., 2022; Goldstein et al., 2023). Yet, questions re-
main about how the brain encodes features of varying com-
plexity during speech processing—from low-level acoustics to
high-level semantics. Building on prior research, we examine
how models with different levels of representational complexity
predict time-resolved neural data during speech processing.

Methods

We use intracranial EEG (iEEG) recordings of five subjects
listening to 30 minutes of audiobook snippets. We focused on
344 electrode contacts, which broadly sample brain regions
considered to be involved in speech and language processing
(Fedorenko, Ivanova, & Regev, 2024). We extracted LFP re-
sponse amplitude, and applied a low-pass filter of 20 Hz. The
data were then downsampled to 40 kHz, and epoched from
-500 ms to +1000 ms around word onset.

Each audio segment was repeated twice, and the repeats
were used to estimate a time-resolved noise ceiling using

Pearson correlation between the response at a given elec-
trode, at each time lag, across repetitions of the same words.
For the analysis of the encoding model, we compared several
acoustic, speech, and language encoding models to exam-
ine how neural responses encode representations of varying
sensory and semantic complexity, at distinct moments in time.
The acoustic embeddings were derived from a cochleagram
model (Feather, Leclerc, Madry, & McDermott, 2023). For
speech embeddings, we use a supervised auditory model with
a ResNet50 (He, Zhang, Ren, & Sun, 2015) backbone and
a cochleagram front end (CochDNN) trained for word recog-
nition (Tuckute, Feather, Boebinger, & McDermott, 2023).
In addition, we use embeddings obtained from the encod-
ing layers of the Whisper model, which are trained for au-
tomatic speech recognition using large-scale, weakly super-
vised audio-text pairs (Radford et al., 2022). Language em-
beddings were extracted from GPT-2 (Radford et al., 2019)
and Llama3 (Touvron et al., 2024), as well as from the de-
coder layers of Whisper, which are optimized for generating
text.

For each electrode and each time sample, we fit an L2-
regularized Ridge regression to predict neural activity from
model embeddings across all words in the audiobooks. Per-
formance was evaluated as the Pearson correlation between
the actual and predicted neural responses as a function of
time relative to word onset.

Results

Figure 1 shows heatmap plots of encoding performance for all
models across time. Each row corresponds to one recording
site in one subject, and the rows are ordered by region and
sorted based on score.

In line with previous findings (Tuckute et al., 2023), we
show that CochDNN substantially outperforms the cochlea-
gram model, suggesting that it captures non-trivial auditory
features beyond the basic acoustic structure of the signal.
Within the language models, LLaMA-3 (8B) reduces the gap
with the noise ceiling prior to word onset, compared to GPT-2,
suggesting improved encoding of predictive context. Notably,
the Whisper encoder exhibits a hybrid performance profile,
showing characteristics of both auditory and language mod-
els, while the Whisper decoder more closely resembles the
temporal dynamics of language models.

To assess whether the auditory and language models cap-
ture shared or distinct aspects of the neural response, we first
build a joint encoding model by concatenating CochDNN and
LLaMA-3 (8B) features and fitting them simultaneously (Figure
2). We then performed variance partitioning to isolate each
model’s unique contribution. As shown in Figure 2, CochDNN
and LLaMA-3 each explain non-overlapping variance across
different time lags, demonstrating that they capture distinct
components of the neural signal.
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Figure 1: Encoding performance over time relative to word onset for each model, measured as the Pearson correlation between
model activations and neural responses at the best-performing layer per electrode. Each row in the heatmap represents the
encoding performance for an electrode in a subject. Rows are ordered by region and sorted by noise ceiling value within region.
Heatmap colors represent Pearson Correlation values.
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