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Abstract 8 

Real-world emotion recognition arises through 9 
continuous interactions among multiple sensory 10 
cues—dynamics often missed by standard laboratory 11 
paradigms. To investigate these dynamics, we 12 
applied a Transformer-based deep-learning model 13 
(SwiFT combined with Perceiver IO) to functional MRI 14 
data from 512 youths (ages 5–21) watching a 10-15 
minute movie. By modeling neural signals as 16 
continuous time-series, we tracked short-term (~40s, 17 
50 TRs) changes in seven emotions (e.g., positive, 18 
fear). Longer sequence windows and explicit 19 
hemodynamic modeling (double-gamma HRF) 20 
improved decoding accuracy, highlighting the 21 
importance of extended temporal context and precise 22 
BOLD-delay modeling. The prominent contribution of 23 
the visual cortex suggests reliance on low-level visual 24 
features within rich audiovisual stimuli. These findings 25 
demonstrate that flexible sequence-to-sequence 26 
methods effectively capture the temporal dynamics of 27 
emotion recognition under realistic conditions, 28 
deepening our understanding of real-world emotional 29 
processing. 30 
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Introduction 35 

Real-world emotion recognition arises from 36 
continuous interactions among multiple sensory cues, 37 
which standard laboratory paradigms often fail to 38 
capture. Conventional neuroscience methods, 39 
typically relying on averaged or segmented neural 40 
signals, also struggle with time-series complexity. 41 
More flexible approaches are thus needed to track 42 
moment-to-moment changes under naturalistic 43 
conditions. 44 

Several theoretical frameworks highlight the 45 
need to study emotions in continuously evolving 46 
contexts. Predictive coding proposes that the brain 47 
updates its predictions based on incoming signals, 48 
making emotional states dynamic inferences shaped 49 
by internal and external factors (Friston & Kiebel, 50 
2009). Constructivist theory (Barrett, 2013) 51 
emphasizes personal context and past experiences, 52 
leading individuals to interpret the same stimulus 53 
differently. Together, these views suggest examining 54 
emotion perception as a process developing over 55 
time, rather than through discrete, controlled 56 
snapshots. 57 

In this study, we investigate how 512 children 58 
and adolescents perceive emotion in a naturalistic 59 
setting by applying a Transformer-based model to 60 
functional MRI data collected during movie viewing. 61 
By modeling neural signals as a continuous time-62 
series rather than averaging across discrete blocks, 63 
we aim to capture the moment-to-moment unfolding 64 
of emotion perception in an environment that more 65 
closely mirrors real-world experiences. This approach 66 
provides insight into how participants interpret 67 
evolving stimuli, bridging the gap between tightly 68 
controlled laboratory tasks and the complexities of 69 
everyday emotional encounters. 70 

Methods 71 

We analyzed fMRI data from 512 youths (5–21 years, 72 
HBN dataset) including ADHD (n=301), ASD (n=63), and 73 
comorbidities (n=59). Participants watched a 10-minute 74 
Despicable Me (750 TRs at 0.8 s), with per-TR ratings of 75 
seven emotions obtained from human raters (Camacho et 76 
al., 2023). 77 

To assess the feasibility of decoding 78 
emotional states, we developed a hybrid deep-79 
learning model by combining SwiFT (Swin 80 
Transformer for fMRI; Kim et al., 2023) and Perceiver 81 
IO (Jaegle et al., 2021). SwiFT encodes 82 
spatiotemporal patches via multi-head self-attention, 83 



while Perceiver IO performs sequence-to-sequence 84 
regression of emotion at each TR. Multiple sequence 85 
lengths (5, 10, 30, 50 TRs) and input offsets (0, 3, 5, 86 
10, 20, 40 TRs) were explored to account for different 87 
stimulus-response lags, and a double-gamma 88 
hemodynamic response function (peak=5 s, 89 
undershoot=12 s) was applied to model BOLD delays. 90 
Integrated Gradients (IG) was computed for the top 91 
20% of test participants (n=21) whose predictions 92 
were most accurate, enabling voxel-level contribution 93 
analysis for each emotion category. 94 

 95 
Figure 1: (A) Effect of sequence length on decoding 96 
performance. We tested windows of 5, 10, 30, and 97 
50 TRs at a fixed learning rate, finding that longer 98 

sequences consistently yielded lower MSE. 99 
(B) Comparison of MSE between non-HRF (fixed 6 s 100 
delay) and a double-gamma HRF. Modeling the full 101 
hemodynamic response consistently lowered MSE, 102 
highlighting the importance of accurately capturing 103 

hemodynamic delay. 104 

Results 105 

To capture the continuous, real-world nature of 106 
emotion decoding, we systematically varied 107 
sequence length (5, 10, 30, 50 TRs), HRF modeling 108 
(fixed 6 s delay vs. double-gamma), and time offset 109 
(0–5 TRs), seeking the optimal configuration for a 110 

sequence-to-sequence approach. A 50-TR window, 111 
3-TR offset, and double-gamma HRF yielded the best 112 
performance (MAE=0.058, MSE=0.040, r=0.894), 113 
while omitting HRF correction increased error rates 114 
(Figure 1). 115 

Next, we assessed model performance across 116 
multiple emotion dimensions. Anger (r = 0748, MSE = 117 
0.13), Fear (r = 0.548, MSE = 0.07) showed higher 118 
prediction accuracy, whereas Sad (r = 0.867, MSE = 2.35), 119 
Happy were more difficult to decode. These results 120 
suggest that dimensions with stronger arousal cues may 121 
exhibit more consistent neural signatures in this paradigm. 122 

IG-based interpretation indicated that the visual 123 
cortex contributed prominently to predictions across all 124 
seven emotion categories, including positive and negative 125 
valence. In the top-performing group of participants, this 126 
region displayed consistently high voxel-wise attribution 127 
scores, suggesting a broad involvement of visual 128 
processing in fMRI-based emotion decoding under 129 
cinematic stimulation (Figure 2). 130 

 131 
Figure 2: Integrated Gradients map for Positive 132 

emotion, displaying the top 5% of voxels contributing 133 
to predictions. Similar patterns emerged across all 134 

emotion categories, highlighting the visual cortex as 135 
a key region in continuous emotion decoding. 136 

Discussion  137 

Our findings show that longer temporal windows and 138 
explicit hemodynamic modeling significantly enhance 139 
continuous emotion decoding, with anger and fear 140 
predicted more accurately than sad—likely reflecting the 141 
stronger neural signals elicited by higher-arousal states. 142 
The visual cortex consistently emerged as a key 143 
contributor, aligning with prior findings on the modulation 144 
of visual processing by emotion (Vuilleumier & Driver, 145 
2007). Future work will compare these methods to 146 
conventional approaches and investigate 147 
developmental/clinical subgroups to see how different 148 
populations encode emotion.  149 
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