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Abstract
Abstraction and generalization are essential for flexible
decision-making in novel situations. Recent work in hu-
mans and monkeys has shown how abstract variables
are encoded by the representational geometry of single-
neuron population activity. However, these observations
are typically made after learning has converged, leaving
open the question of how these representations form. To
address this question, we developed a factorized model
of temporal abstraction that builds on the successor rep-
resentation. The model disentangles the contributions
of different levels of abstract learning—from stimulus-
response associations to generalizable task schema—in
the form of a factorized prediction error that relates the
change in relational knowledge to a predicted change
in representational geometry on each trial. We fit the
model to the behavior of human participants performing a
context-dependent decision task during fMRI. The model
captured the learning dynamics at multiple timescales, in-
cluding the increasing contribution of generalization as
participants transferred abstracted relational knowledge
between novel task instances. In fMRI, BOLD activity in
orbitofrontal cortex, hippocampus, and amygdala corre-
lated more with learning attributed to generalization than
to the other levels of abstraction. Moreover, the rela-
tive dominance of generalization over the other levels in-
creased across task instances in entorhinal cortex, as
well as orbitofrontal cortex and hippocampus. Finally, in-
dividual variation in the generalization neural signal cor-
related with behavioral performance on key trials that re-
quired relational knowledge. Our findings align with re-
cent proposals for how the brain generalizes abstracted
knowledge to current task-relevant states. Our approach
offers a computational framework for probing the dynam-
ics of representational geometry under continual abstract
learning.

Keywords: abstraction; generalization; continual learning; re-
lational learning; representational geometry

We introduce a computational framework and new experi-
ment with several key features: a) behavioral paradigm per-
mitting continual learning over multiple levels of abstraction;
b) computational model quantifying the contribution of each
level to relational knowledge; and c) method for relating trial-
wise changes in relational knowledge to coincident changes
in representational geometry.

Methods
We extended a reversal-learning task from prior studies in
monkey and human to include multiple levels of abstract learn-
ing (Bernardi et al., 2020; Courellis et al., 2024). During fMRI,
healthy human participants (n=41) learned the optimal action
and outcome contingencies for a set of stimuli (“local associa-
tive learning”). Unbeknownst to participants, the contingen-
cies depended on two latent contexts that alternated in blocks

of trials (Fig b). Participants learned and exploited the context-
dependent structure: a change in one stimulus was sufficient
to update choices for the other stimuli (“cross-context learn-
ing”). Across sessions, novel stimuli were used, and partic-
ipants learned to generalize the task structure to these new
instances of the task (“generalization”; Fig c).

To study these multiple levels of learning, we built on the
successor representation (SR), a model of temporal abstrac-
tion previously applied to planning and navigation and shown
to correlate with activity in hippocampus in both animal single
neurons and human fMRI (Stachenfeld et al., 2017; Russek et
al., 2021; Momennejad et al., 2017; Dayan, 1993; Garvert et
al., 2017). The model learned the temporal relationships be-
tween behavioral “states” (i.e., unique combinations of stimu-
lus, optimal action, and outcome), which it used to infer the
current state (and thereby optimal action) given the previous
state. We extended the traditional SR model to include higher
levels of abstraction based on recent theory for how associa-
tive memory systems learn latent structure (Stachenfeld et al.,
2017; Whittington et al., 2020). Critically, our “generalized SR”
(gSR) model disentangled the contribution of each level of ab-
straction in the form of a factorized prediction error with sep-
arate terms for local associative learning, cross-context learn-
ing, and generalization (see “gSR model” for details). When
the weights for each factor were fit to behavior, the trial-to-
trial magnitude of the corresponding error term revealed the
change in a participant’s relational knowledge attributed to the
respective level of abstraction on any given trial.

Results

Unlike the traditional SR, the gSR model reproduced the multi-
ple timescales of learning (e.g., across contexts and sessions;
Fig c) observed in the behavior. Moreover, by interrogating the
composition of the prediction error, we found that the basis
for learning evolved with experience: participants increasingly
relied less on local associative learning and more on gener-
alization, i.e., learning to map the new task instance to the
previously-learned abstract structure.

Although the model’s internal representation defined a rep-
resentational geometry analogous to that observed in single
neurons (Bernardi et al., 2020; Courellis et al., 2024), we did
not test for this geometry directly. Rather, we exploited the
factorized prediction error to predict the change in represen-
tational geometry attributable to each level of abstraction. By
testing these trial-wise predictions in fMRI, we probed the dy-
namics of the neural geometry, and obviated the problem of
estimating the full geometry on every trial.

Using a single fMRI model, we compared the correlation
between BOLD activity and the generalization-based predic-
tion error to the BOLD correlation with the other prediction er-
rors in orbitofrontal cortex, hippocampus, amygdala, and en-
torhinal cortex—a network of regions implicated in represent-
ing relational structure and abstracting shared features across
different experiences (Elston & Wallis, 2025; Schapiro et al.,
2013; Wikenheiser & Schoenbaum, 2016; Saez et al., 2015;



Garvert et al., 2017). We asked where the contribution of gen-
eralization dominated either across all sessions or where it in-
creased from session to session. Overall, BOLD activity corre-
lated more with generalization than the other learning levels in
orbitofrontal cortex, hippocampus, and amygdala (Fig d). This
aligned with previous single-neuron work showing that neu-
ral geometry in the medial temporal lobe and prefrontal cortex
represented latent context in a generalizable format in humans
and monkeys performing a similar task (Bernardi et al., 2020;
Courellis et al., 2024). Crucially, this past work was limited to a
static snapshot of the geometry at a point either before or after
learning. In contrast, our data relate the trial-to-trial dynam-
ics of learning to the formation of the neural representation
during learning. In particular, the dominance of generaliza-
tion’s contribution to the BOLD signal, like to the behavior, in-
creased over consecutive task sessions in orbitofrontal cortex,
hippocampus, and entorhinal cortex, where grid cells may pro-
vide a low-dimensional teaching signal that facilitates transfer
of abstract knowledge to novel situations (Whittington et al.,
2020; Stachenfeld et al., 2017; Schapiro et al., 2017). More-
over, the component of BOLD activity attributable to general-
ization correlated with individual variation in behavioral perfor-
mance on “inference trials”, i.e., the small fraction of trials that
required relational task knowledge (Fig d).

Our findings support converging evidence for a network of
brain regions that learn relational structure and represent it in
a generalizable format that can be applied to new instances:
entorhinal inputs to amygdala and hippocampus provide re-
lational knowledge abstracted from prior experience (mod-
eled as the generalization term), which are then integrated
with current experience to represent the current environment
(Stachenfeld et al., 2017; Whittington et al., 2020).

gSR model
Each model term corresponds to a level of abstraction. Lo-
cal associative learning (α) encodes the local temporal rela-
tionships between states using temporal difference learning.
Cross-context learning (ωself) extracts structured relationships
across multiple contexts and longer time spans using low-rank
self-regularization. Generalization (ωprev) transfers relational
knowledge between environments via low-rank rotation and
regularization toward the SR matrix from the prior session.

The 8 unique stimulus-action-outcome combinations define
S = 8 states. Element (st−1,s′) of the SR matrix M ∈ IRS×S

represents the expected future occupancy of state s′ on trial
t given previous state st−1, from which the agent infers the
identity of s′. After the choice, the outcome on trial t serves
as a label (correct, incorrect) for self-supervised learning to
resolve the current state (i.e, s′ = st ). Row (st−1, :) is then
updated:

M̂t+1(st−1, :)=Mt(st−1, :)+α[1st +γMt(st , :)−Mt(st−1, :)]

+ωself f k(Mt)(st−1, :)
where α ∈ [0,1] is the learning rate, γ ∈ [0,1] is the temporal
discounting factor (maximal when γ = 0), and ωsel f ∈ [0,∞]
scales the self-regularization function f (below). The row vec-

tor 1 has value 1 for the current state st and 0 otherwise.
For sessions > 1, the agent generalizes the SR matrix

learned from the previous session Mprev to the current ses-
sion by way of the generalization function g (below), which is
scaled by ωprev ∈ [0,∞] and applied to all rows. Combining
with the row-updated matrix M̂t+1 gives the updated full SR
matrix:

Mt+1 = M̂t+1 +ωprevgk(Mt ,Mprev)

Functions f and g use the principal components (PCs) of
M on trial t, which entorhinal grid cells may provide to amyg-
dala and hippocampus (Stachenfeld et al., 2017). f k(Mt) self-
regularizes M to its top k PCs. gk(Mt ,Mprev) assumes that
the PCs for any two SR matrices learned on the same meta-
structure are equivalent given some rotation R. We estimate R
in the space of the top k PCs and regularize Mt toward Mprev.
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(a) Trial sequence. (b) Stimulus (S), action (A), outcome (O)
contingency depended on alternating context. (c) Choice ac-
curacy on “inference trials” (first encounter with each stimu-
lus after context switch) improved over blocks (“cross-context
learning”; purple arrow) and sessions with novel stimuli
(“generalization”; red arrows). (d) Clusters where BOLD
activity correlated more with generalization prediction er-
ror than cross-context (purple numerals) or local associa-
tive (green numerals) learning prediction error either overall
(red-yellow voxels) or increasing over sessions (pink voxels).
Generalization-based component of BOLD activity correlated
with behavioral performance on inference trials (far right). (No
prior experience to generalize in session 1.)
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