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Abstract

Speech understanding requires integrating the current in-
put with surrounding context. Prior research has found
that increasing context size in artificial text-based lan-
guage systems leads to improved predictivity of hu-
man brain activity. Here, we investigate (i) how the
type of context (unidirectional; bidirectional) influences
brain alignment; (ii) how the information contained in
speech and text model embeddings changes as a func-
tion of context size and context type; (iii) what changes in
model representations could explain brain alignment. We
recorded intracranial EEG of participants listening to au-
diobooks, and extracted corresponding layerwise embed-
dings from a speech model (Wav2Vec2) and a language
model (RoBERTa) under different context sizes and types.
We find that context type rather than size has the biggest
influence on the linear decodability of linguistic structure,
the intrinsic dimensionality of the underlying representa-
tions, and ultimately, brain alignment. This work repre-
sents an important step towards understanding the repre-
sentational basis of model-brain alignment, and identifies
context type as an important driver of models extracting
brain-relevant information.
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Introduction

Language understanding — in both biological and artificial sys-
tems — involves continuously integrating incoming input with
available contextual information (Gwilliams, King, Marantz, &
Poeppel, 2022; Heilbron, Armeni, Schoffelen, Hagoort, & de
Lange, 2022). It has been proposed that this common pro-
cessing strategy leads to the the success of artificial language
systems in predicting human brain activity during speech and
text processing (Vaidya, Jain, & Huth, 2022; Schrimpf et
al., 2021). In line with this, model-brain alignment improves
as more context is provided to the model (Abnar, Beinborn,
Choenni, & Zuidema, 2019; Toneva & Wehbe, 2019; Ander-
son, Davis, & Lalor, 2024).
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Figure 1: We compute Representational Dissimilarity Matrices
(RDMs) for word-aligned sEEG data (across timepoints), and
for audio- and text-based word embeddings extracted from
Transformer models (across layers). We then compare RDMs
within and across language processing systems.

The observation that adjusting context affects brain align-
ment implies that model representations change to become
more ‘brain-like’ with increased context. In addition to context
size, context can also differ in kind. For example, a model may
only consider the past (unidirectional context), or also the fu-
ture (bidirectional context). The human brain has been shown
to use both past and future inputs to derive ultimate under-
standing (Gwilliams, Linzen, Poeppel, & Marantz, 2018).

Here, we aim to improve our understanding of what explains
representational alignment across language processing sys-
tems, by studying different types and different sizes of con-
text. What contextually driven differences in speech- and text-
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Figure 2: A) Different context windows provided alongside the target word as model input (shown are the no context, 5-preceding
and 5+5 surrounding conditions). B) Context effects on model-brain similarity, across layers and sEEG timepoints (right), and
averaged over layers and timepoints for all context windows (left). C) Context effects on model intrinsic dimensionality do not fully
mirror those on model-brain similarity. D) Within-model representational similarities are larger between similar context types than
between similar context sizes. E) Across models, similarity peaks between late Wav2Vec2 and early RoBERTa layers. F) Model
encoding of part-of-speech categories benefits more from contextualization than model encoding of word length (in syllables).

model representations of linguistic input have consequences
for their alignment to human neural activity?

Methods

Neural data Stereo-EEG (sEEG) data was recorded while
participants listened to audiobook snippets. We extracted
epochs between 600 ms before and 1800 ms after word onset
from aggregated data across 1082 electrodes and 7 partici-
pants. From these, we selected 47 electrodes for analysis,
which showed highest activity within 400 ms after word onset.

Transformer model embeddings Based on the audio-
book recordings and aligned text transcriptions, we ex-
tracted layerwise word-level embeddings from one audio-
based (Wav2Vec2-base; Baevski, Zhou, Mohamed, & Auli,
2020) and one text-based (RoBERTa-base; Liu et al., 2019)
Transformer model. Both models are pre-trained with a bidi-
rectional masked objective; Wav2Vec2 operating on audio
frame representations, and RoBERTa on sub-word text token
embeddings. For both models, we extract the input embed-
dings and hidden state representations at each Transformer
layer, mean-pooling across audio frame and text token repre-
sentations within each word (Fig. 1). We provide each model
with three different types and several different sizes of linguis-
tic context to investigate contextualization effects across the
generated embeddings (Fig. 2A).

Representational analysis techniques We compute Pear-
son’s correlations between cosine-distance RDMs to quan-
tify representational alignment between models, as well as
model-brain alignment (Fig. 1). Alignment to the SEEG activity
is computed separately for 241 timepoints across the epoch.
To quantify the intrinsic dimensionality of model representa-
tions we computed Participation Ratios (Gao et al., 2017), and

to quantify the decodability of linguistic features across model
layers we trained multinomial logistic regression probes.

Results & Discussion

Across our analyses, we observe large differences between
model representations of isolated words on the one hand,
and representations that integrate linguistic context on the
other (Fig. 2BCD). Furthermore, differences are generally
largest between context type (i.e. preceding, surrounding or
no context) rather than context size, suggesting that represen-
tational alignment is not simply driven by the amount of shared
context. While studies of text-based models have found
that layerwise brain-alignment scores closely follow geomet-
ric measures of model intrinsic dimensionality (ID; Antonello
& Cheng, 2024), we find a different pattern when comparing
across context conditions. Both brain-similarity (Fig 2B) and
ID (Fig 2C) increase when models integrate linguistic context;
however, surrounding context increases model-brain align-
ment but not ID for Wav2Vec2, and vice versa for RoBERTa.
Hence, context effects on model-brain alignment do not seem
to be purely driven by intrinsic dimensionality either.

To further explore what linguistic properties might benefit
from contextualization and potentially drive differences in brain
alignment, we investigate the encoding of linguistic features
across the layers of each model’s contextualization module
(i.e. the Transformer). We find considerable similarity between
late layers of the audio-based Wav2Vec2 model and early lay-
ers of the text-based RoBERTa model, showing that model
internal representations can align when processing similar lin-
guistic content, despite differing in modality (Fig. 2E). When
probing the decodability of linguistic features across model
layers, we find that the same layers peak for more abstract fea-
tures, such as part-of-speech category (Fig. 2F). Moreover,
these features benefit most from the integration of linguistic



context: while more surface-level features such as word length
are similarly decodable from isolated word vs. contextualized
representations, higher-level features show larger differences
between these conditions, which increase over model layers.

Our current results show that linguistic context shapes the
internal representations of audio- and text-based Transformer
models, as well as their alignment to human brain activity in
naturalistic speech comprehension. Contextualization bene-
fits model-brain alignment as well as the decodability of more
abstract (but not surface-level) linguistic features from model
internals. This raises the question of what contextual linguistic
features actually drive more brain-like model representations.
Future work could investigate causal effects by ablating spe-
cific contextual features from model input (Kauf, Tuckute, Levy,
Andreas, & Fedorenko, 2023) or removing their decodability
from model-internal representations (Oota, Gupta, & Toneva,
2023). Furthermore, we plan to investigate the temporal dy-
namics of context effects on model-brain alignment (Fig. 2B),
as well as context effects on features below the word level.
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