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Abstract
To be practically useful, vision decoding models trained
on perceived images must generalize effectively to men-
tal images—internally generated visual representations.
Analysis of the NSD-Imagery dataset revealed that achiev-
ing state-of-the-art (SOTA) results on seen images does
not guarantee similar performance on mental images. To
address this gap, we developed MIRAGE, a model explic-
itly designed to generalize from visually perceived data
to mental imagery decoding. MIRAGE employs a robust
ridge regression approach, utilizes multi-modal condition-
ing with text and small-dimension image embeddings,
and leverages the Stable Cascade diffusion model. Ex-
tensive human evaluations and image metrics establish
MIRAGE as the SOTA method for mental image reconstruc-
tion on NSD-Imagery. Our ablation studies emphasize
that mental imagery decoding benefits from simple archi-
tectures robust to low signal-to-noise conditions, explicit
low-level guidance, multi-modal semantic features, and
lower-dimensional embeddings compared to typical vision
decoders. These findings highlight the potential of exist-
ing visual datasets for training models capable of effective
mental imagery decoding.
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Introduction
Decoding mental imagery—visual experiences generated in-
ternally without direct sensory input—from brain activity is
crucial for advancing brain-computer interfaces and clinical
tools for communication-impaired individuals. Although recent
developments in generative AI and deep learning have signifi-
cantly improved decoding visual perceptions from brain signals
(Takagi & Nishimoto, 2023; Scotti et al., 2024, 2023), these ad-
vances do not reliably extend to decoding internally generated
mental images (Kneeland et al., 2025). The recently released
NSD-Imagery dataset highlighted that state-of-the-art vision
decoders such as MindEye2 (Scotti et al., 2024)—trained on vi-
sually perceived images—often perform poorly when applied to
mental imagery, underscoring the unique neurobiological and
representational challenges associated with mental imagery
(Favila, Kuhl, & Winawer, 2019; Friston, 2017).

We present MIRAGE (Mental Image Reconstruction using
Advanced Generative ModEls), designed specifically for mental
imagery decoding. MIRAGE leverages architectural features
inspired by frameworks that are observed to be more robust on
mental images (Ozcelik & VanRullen, 2023), and demonstrates
superior performance through critical architectural choices that
enable successful generalization from seen to imagined im-
ages.

MIRAGE

Datasets

We train MIRAGE exclusively on the Natural Scenes Dataset
(NSD) (Allen et al., 2022), using subjects 1, 2, 5, and 7, each

completing approximately 30k fMRI-image pairs. Data pre-
processing included applying the provided nsdgeneral voxel
mask at 1.8 mm resolution, capturing activity from early to
higher-level visual cortex areas.

Evaluation is conducted on the NSD-Imagery benchmark
(Kneeland et al., 2025), where participants imagined pre-
learned visual stimuli upon cue presentation. The experimental
conditions closely follow NSD, enabling direct comparisons.

Figure 1: MIRAGE inference pipeline. (1) Subjects imagine
visual stimuli cued by letters during 7T fMRI scanning. (2)
Ridge regression decodes fMRI data into embeddings. (3)
VDVAE (Child, 2021) latents reconstruct a low-level image,
(4) which is filtered to enhance structure. (5) Stable Cascade
(Pernias et al., 2024) uses the filtered image and decoded
embeddings to generate 16 candidate images. (6) Candidates
are encoded using CLIP ViT-L/14 (Radford et al., 2021), (7) and
the final reconstruction is selected based on cosine similarity
to the decoded embedding. (8) The selected embedding drives
a GiT (Wang et al., 2022) captioning model to (9) produce a
caption alongside the final image.

Methodology
MIRAGE incorporates two essential design principles for effec-
tive generalization from vision decoding to mental imagery:

Reduced model complexity: MIRAGE uses linear ridge
regression instead of complex non-linear MLPs, enhancing ro-
bustness in low-SNR settings typical of mental imagery (Hoerl
& Kennard, 1970).

Representational alignment: Leveraging the semantic
overlap between vision and imagery in higher-level visual cor-
tex (Breedlove, St-Yves, Olman, & Naselaris, 2020), and area
known to encode information in language-like formats, MI-
RAGE incorporates multi-modal guidance from CLIP embed-
dings derived from both images and text.

Results
The mental image reconstructions produced by MIRAGE (Fig-
ure 2) are qualitatively quite faithful to the ground truth images
the subjects were instructed to imagine. To validate this prop-
erty, we conducted a large-scale behavioral experiment where



Figure 2: MIRAGE reconstructions of imagined stimuli from NSD-Imagery.

human raters (n=500) were asked to perform a two-alternative
forced choice judgement between matched and unmatched
reconstructions of the target stimuli. Human raters identified
the correct mental image reconstructions 78.30% of the time
(p < 0.001) for our method (Table 1).

Human Identification Accuracy – Mental Imagery Reconstructions

Method All Stimuli ↑ Simple ↑ Complex ↑ Conceptual ↑

MIRAGE (ours) 78.30% 73.93% 83.19% 77.68%
MindEye1 73.00% 71.01% 82.28% 65.68%
Brain Diffuser 73.95% 68.20% 82.70% 71.01%
iCNN 66.15% 66.81% 70.04% 61.60%
MindEye2 56.96% 50.21% 64.83% 55.74%

Table 1: Human identification accuracy (chance = 50%). Best
values bold; second best underlined.

Ablation Study

Figure 3: Ablation analyses. Model variants (numbered circles)
under each ablation type (color) are assessed via a normalized
average of a set of image feature metrics for vision (x-axis) and
imagery (y-axis).

To understand why MIRAGE succeeds where other meth-
ods struggle, we conducted extensive ablations examining

several critical architectural choices (Figure 3). The linear
ridge regression backbone selected in our model (1) consis-
tently outperformed the more complex MLP and diffusion prior
architectures from MindEye models (12–15), emphasizing that
simpler, more robust models generalize better to the inherently
lower signal-to-noise ratio of mental imagery. Furthermore, in-
corporating multimodal guidance—combining both image and
text features (1)—yielded substantial performance improve-
ments over image-only (10) or text-only (11) guidance alone.
The retrieval module (4), which leverages high-dimensional
embeddings, significantly enhanced reconstruction quality. Ad-
ditional benefits were observed from implementing image fil-
tering techniques (2) and employing longer synthetic captions
(1), demonstrating these elements effectively mitigate struc-
tural and representational differences between perceived visual
stimuli and internally generated mental images.

Discussion
MIRAGE introduces a powerful decoding pipeline that signifi-
cantly advances mental imagery reconstruction beyond existing
state-of-the-art methods (Scotti et al., 2024; Ozcelik & Van-
Rullen, 2023). Its simplified linear decoding backbone, dimen-
sionality reduction of latent representations, and multimodal
integration are pivotal for its success. MIRAGE’s effective
training solely on vision datasets greatly simplifies data require-
ments, addressing the scarcity of mental imagery datasets.
However, limitations remain, including dataset availability and
computational requirements, which pose challenges for practi-
cal deployment.

Potential applications for MIRAGE span consumer-focused
brain-computer interfaces, memory visualization tools, and clin-
ical diagnostics for psychiatric disorders (Holmes & Mathews,
2010), disorders of consciousness (Edlow et al., 2017), or
severe motor disabilities (Canny, Vansteensel, van der Salm,
Müller-Putz, & Berezutskaya, 2023).

Ethical Considerations
Brain decoding technologies raise significant ethical issues
concerning privacy, consent, and misuse. Clear ethical and
legal frameworks are vital for responsible usage. Clinical appli-
cations must adhere strictly to medical guidelines and patient
privacy regulations, while non-clinical uses should enforce
informed consent and additional protective measures to safe-
guard individual rights.
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