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Abstract
The ability to use complex language is uniquely human
and underpins abstract thought, cultural transmission,
and the structure of society. Understanding its neural
basis in naturalistic settings remains a major challenge.
In this study, we investigate whether word classes can
be decoded from low-dimensional MEG data recorded
during audio book listening. Using a minimalist model-
ing approach, we trained neural networks on individual
MEG channels and identified peak classification perfor-
mance over left frontal sensors, consistent with the in-
volvement of Broca’s area in grammar and predictive pro-
cessing. As a proof of concept, we applied sequential
deep dreaming to reveal prototypical neural patterns for
nouns and verbs. While the results demonstrate feasi-
bility, limitations due to data sparsity, class imbalance
and single-subject design highlight the need for broader
validation. Our approach represents a first step towards
interpretable decoding of linguistic structure from MEG
during natural, continuous speech comprehension.
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Introduction
Deciphering how the human brain processes language in
real-world settings remains a fundamental challenge in cog-
nitive neuroscience. Magnetoencephalography (MEG), with
its millisecond-level temporal resolution, offers a powerful
window into the rapid neural dynamics that underlie natu-
ral speech comprehension (Hansen, Kringelbach, & Salmelin,
2010; Tavabi, Obleser, Dobel, & Pantev, 2007). However, nat-
uralistic stimuli such as audio books pose analytical difficul-
ties. Unlike isolated word presentations, continuous speech
elicits temporally overlapping neural responses, complicating
the attribution of activity to specific linguistic units (Schilling
et al., 2021; Koelbl et al., 2024; Garibyan, Schilling, Boehm,
Zankl, & Krauss, 2022). Another difficulty lies in the limited

number of occurrences of certain linguistic categories, such
as word classes, in natural speech. This data sparsity is a
particular problem for MEG, where a large number of features
can easily lead to overfitting and poor model generalization.
In addition, MEG has a low signal-to-noise ratio and is par-
ticularly sensitive to extraneous noise and physiological arti-
facts (Burgess, 2020; Hansen et al., 2010), making it more
difficult to detect consistent neural patterns. While classifi-
cation of MEG data can demonstrate that linguistic categories
such as word classes are decodable, it provides limited insight
into how these categories are actually represented and pro-
cessed in the brain. To go beyond decoding accuracy, we use
a generative approach - sequential deep dreaming (Schlegel,
Keim, & Sutter, 2024) - to explore the internal representa-
tions learned by the model. Sequential deep dreaming is a
method of iteratively generating input patterns that maximally
activate a trained neural network, allowing researchers to un-
cover prototypical features associated with particular classes
(Ellis, Sendi, Miller, & Calhoun, 2021). Thus, we use this tech-
nique to identify prototypical neural response patterns associ-
ated with different word classes, providing a window into the
brain’s encoding of linguistic structure.
In this first study, we explore the feasibility of decoding word-
class information from MEG recordings collected during nat-
uralistic audio book listening in a single participant. To ad-
dress the challenges of overlapping neural responses and
data sparsity, we employ a streamlined modeling approach:
individual MEG channels are used to train a fully connected
neural network, with both spatial and temporal resolution de-
liberately reduced to minimize complexity and overfitting. As
a proof of concept, we also apply a sequential deep-dreaming
approach to the trained model to uncover prototypical neural
patterns associated with word classes. Together, these meth-
ods lay the groundwork for extracting structured linguistic rep-
resentations from low-dimensional MEG data, while highlight-
ing the preliminary nature of the results.



Figure 1: Average brain activity of one subject for nouns (A), verbs (B), adjectives (C) and proper nouns (D). (E): Sensor positions;
(F): Workflow of data splitting, sampling, and training the classifier network; (G): Classification accuracies for best sensor A213
(location in H). I: Confusion matrices for the classification results of 70 trials; J: Prototypical ERFs signals generated through
sequential deep dreaming using the weights of corresponding classifier network.

Methods

In this study, brain activity was recorded while a partici-
pant listened to approximately 50 minutes of the German
audio book ”Vakuum” by Philip P. Peterson (Argon Verlag).
Magnetoencephalography (MEG) data were acquired using
a 248-channel system (Magnes 3600WH, 4D-Neuroimaging).
The study was approved by the Ethics Committee of the
University Hospital Erlangen (Approval No. 22-361-2, PK).
Pre-processing was performed using MNE-Python (v1.7.1)
(Gramfort et al., 2013), including detection and interpola-
tion of bad sensors, band-pass filtering (1–20 Hz), and down-
sampling to 200 Hz. Independent component analysis (ICA)
was applied to further reduce artifacts (Ferrante et al., 2022;
Koelbl, Schilling, & Krauss, 2023). To simplify the data for clas-
sification, we applied an additional low-pass filter (1–10 Hz)
and further downsampled the signal to 20 Hz. Linguistic an-
notation of the audio book transcript was carried out using
spaCy (Honnibal, Montani, Van Landeghem, & Boyd, 2020),
and four word classes were selected for analysis: nouns (n =
1328), verbs (n = 905), adjectives (n = 306), and proper nouns
(n = 397). MEG data were segmented from 100 ms before to
800 ms after word onset for each instance (Figure 1 A–D: Av-
erage event-related fields (ERFs) for the four word classes).
Given the imbalanced distribution of word classes in our
dataset (ranging from 306 to 1328 samples) and the overall
limited sample size, we implemented tailored sampling strate-
gies for training and testing (Fig. 1 F). To improve the signal-
to-noise ratio, we averaged multiple trials to generate class-
specific ERFs. The training set (70% of the data) was upsam-
pled to 2,000 instances per class using sampling with replace-

ment, while the test set (30%) was sampled without replace-
ment to preserve the original class distribution. Additionally,
we addressed the effect of trial averaging on classification per-
formance by generating ERFs with varying numbers of trials,
from 20 to 80 in steps of 10. To reduce data dimensionality,
we trained models on every second MEG channel individually
(channels A1–A248, step size 2; Fig. 1 E). For classification,
we used a compact fully connected neural network consisting
of two linear layers with dropout (p = 0.3) for regularization, im-
plemented in PyTorch (Paszke et al., 2019) (layer sized spec-
ified in Fig. 1 F).

Results

The most robust and consistent classification accuracy (Fig.
1 G) was observed for channel A213 (Fig. 1 H), located in
the left prefrontal region, suggesting that this area may con-
tain particularly discriminative information to distinguish word
categories during naturalistic language processing (confusion
matrix in Fig. 1 I). Despite the inherent variability in neural re-
sponses during continuous speech, driven by contextual, lin-
guistic and attentional dynamics, the model achieved a mean-
ingful classification of word types. As a first exploratory step,
we applied sequential deep dreaming to the trained network,
which generated distinct prototypical ERF patterns for nouns
and verbs (Fig. 1 J). Given the limitations of the dataset,
both in terms of size and balance, the findings from the deep
dreaming analysis are exploratory in nature and should be in-
terpreted with caution. The under-representation of certain
word classes, particularly proper nouns and adjectives, limited
both the statistical power of the study and the performance of



the classifier. In addition, inter-individual variability in MEG
responses remains a critical factor, highlighting the need for
larger, multi-participant datasets to validate and generalize
these initial findings.

Discussion
The present study investigates the feasibility of decoding word
categories from MEG data recorded during naturalistic audio
book listening. Using a minimalist modeling approach - train-
ing a simple neural networks on individual MEG channels -
we demonstrate that word class information can be extracted
from low-dimensional data. In addition, we apply sequen-
tial deep dreaming to explore prototypical neural response
patterns, providing preliminary insights into category-specific
brain activity during continuous speech processing. The fact
that a sensor placed above the left frontal cortex yielded the
most robust classification performance suggests a critical role
for this region in distinguishing between word classes during
naturalistic language processing. This is consistent with the
well-established involvement of Broca’s area in grammatical
structure processing and morphosyntactic integration (Sahin,
Pinker, Cash, Schomer, & Halgren, 2009), as well as predic-
tive coding accounts that implicate frontal regions in anticipat-
ing upcoming linguistic information based on contextual cues
(Grisoni, Tomasello, & Pulvermüller, 2021; Grisoni, Miller, &
Pulvermüller, 2017).
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