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Abstract

Neural representations in biological memory systems
change systematically during associative learning. The
Non-Monotonic Plasticity Hypothesis (NMPH) proposes
that these changes follow a surprising U-shaped pattern
based on how strongly two items are initially related,
with initially-moderately-related items becoming signifi-
cantly more distinct after learning, rather than more sim-
ilar. We provide the first evidence that large language
models (LLMs) also exhibit this non-monotonic pattern
of representational change, aligning with the NMPH ob-
served in humans. Using an in-context associative learn-
ing paradigm, with no changes to model weights, we
show that moderately similar token pairs significantly dif-
ferentiate, and this differentiation occurs when accuracy
is both highest and most stable across repeated item pre-
sentations. Our results suggest that LLMs can model hu-
man associative learning, offering a framework to study
representational change during learning.
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Introduction

As humans learn, neural representations change. While
the traditional Hebbian view suggests that associating two
items makes their representations more similar, leading to
integration, empirical studies (Chanales, Tremblay-McGaw,
Drascher, & Kuhl, 2021; Favila, Chanales, & Kuhl, 2016;
Schlichting, Mumford, & Preston, 2015) have found both inte-
gration and differentiation. To explain this variability, the Non-
Monotonic Plasticity Hypothesis (NMPH) (Ritvo, Turk-Browne,
& Norman, 2019) proposes a U-shaped relationship between
initial item similarity and representational change.

Recent findings further support the NMPH (Ritvo et al.,
2019), showing strong differentiation for moderately similar
items. However, the mechanisms behind this effect remain
unclear. One explanation links differentiation to suppression
of competing memories, and integration to successful re-
trieval (Hulbert & Norman, 2015; Norman, Newman, Detre,
& Polyn, 2006). A computational model has been proposed
to explain this process (Ritvo, Nguyen, Turk-Browne, & Nor-
man, 2024), but its simplified architecture, explicitly designed
to produce U-shaped learning curves, may limit its ability to
fully capture memory dynamics.

In this work, we show for the first time that non-monotonic
representational changes also emerge in pretrained large lan-
guage models (LLMs) during in-context learning, which has
been proposed as a model of rapid associative learning (Zhao,
2023; Y. Jiang, Rajendran, Ravikumar, & Aragam, 2024).
The representational changes mirror those observed in hu-
mans, with significant differentiation between mid-similarity
item pairs (Fig. 1), consistent with the NMPH. We further show
that this change occurs during what we term the “consolida-
tion phase”, a phase that stabilizes learned associations while
preserving high accuracy. These findings suggest LLMs may
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Figure 1: Representational change due to learning during the
“consolidation” phase is consistent with the Non-Monotonic
Plasticity Hypothesis. Asterisks (x) indicate values signifi-
cantly lower than 0 (p < 0.05).

model human associative learning and could potentially offer
insights into differentiation mechanisms.

Methods

Learning Paradigm. Our associative learning paradigm is
inspired by (Wammes, Norman, & Turk-Browne, 2022) and
adapted to large language models (LLMs) using in-context
learning (Brown et al., 2020; Burns, Fukai, & Earls, 2024).
To allow the LLM to learn an association between a token pair
(e.g. A1 and Aj3), we present multiple repetitions of the token
pair to the LLM in the input context (e.g., AjA2A1A;...Ay).
This setup mimics statistical learning, where hippocampal rep-
resentations adapt through repeated co-occurrence. We eval-
uate the associative learning by the accuracy of predicting the
correct token in the token pair (e.g. A; if the last input token is
A1). To study representational changes in the token pair, we
extract representations from the LLM for the tokens pre and
post learning. The pre-learning representations are extracted
for each token after only one presentation of the token pair,
mimicking initial stimulus exposure in the hippocampus before
structured learning. The post-learning representations are ex-
tracted after the full number of repetitions of the token pair, at
the position of the last token in the input and the first predicted
token. We focus our analysis on the last layer, as it is closest
to the model’s output and thus most directly reflects behavior.
Pairs of Tokens Search. We manipulate the initial related-
ness between paired items by varying their representational
similarity. To find LLM token pairs with a pre-specified co-
sine similarity, we adapt the Greedy Coordinate Gradient al-
gorithm (Zou et al., 2023). For a given token A, we compute
its cosine similarity with a second token A,, where represen-
tations are extracted from a contextualized prompt A1A> (i.e.,
Ajy’s representation is conditioned on A;). We initialize A, by
projecting its one-hot encoding through the model’s embed-
ding matrix. The gradient of this similarity is then used to iter-
atively adjust A,, prioritizing the tokens with the highest impact
on similarity adjustments. The algorithm continues refining A»
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(b) Representational change due to learning.

Figure 2: Accuracy and representational changes during learning. (a) Models exhibit three distinct phases during learning:
encoding, where accuracy steeply increases; consolidation, where accuracy stabilizes; and forgetting, where accuracy declines.
The x-axis for each model is scaled by the length of its learning phase. (b) The U-shaped differentiation pattern, characteristic
of the Non-Monotonic Plasticity Hypothesis, is observed only during consolidation (red). Asterisks (x) indicate p < 0.05.

until its similarity to A falls within the target range. We define
17 similarity groups spanning cosine ranges from 0.1 to 0.95
in increments of 0.05, and sample 12 token pairs per group.
Models & Measures. We analyze 6 recent open-source lan-
guage models (Fig. 1) (Touvron et al., 2023; Grattafiori et al.,
2024; Team et al., 2024; A. Q. Jiang et al., 2023), selected
for efficiency and representativeness. To quantify learning-
related representational change, we compute the difference in
pair cosine similarity (post — pre) across models. We test sig-
nificance using one-sided paired t-tests, evaluating whether
post-learning similarity is lower than pre-learning similarity.
Asterisks mark groups with significant differentiation.

Results

Accuracy. All models successfully learn the association task,
reaching 90 — 100% accuracy. The number of repetitions of
the paired tokens that are needed to learn the task differs
across models, and we observe three distinct learning phases
as the number of repetitions increases (Fig. 2a): (1) an en-
coding phase (blue), during which the model learns the asso-
ciation and the accuracy rises sharply > 97% of the model’s
maximum accuracy; (2) a consolidating phase (red), during
which the model retains the learned association without much
fluctuation in its performance (< 3% relative change in ac-
curacy between consecutive repetitions), and (3) a forgetting
phase (green), where accuracy starts to decline (> 3% rela-
tive decrease in accuracy). All models reach high and stable
accuracy, transitioning from the encoding to the consolidation
phase, within 3 — 8 repetitions. Only Llama2-7b and Mistral-7b
show a forgetting phase, with Llama2-7b beginning to forget
early (at r = 40) and Mistral-7b much later (at » = 3000).

Representational Change. We next examine how represen-
tations evolve across the three learning phases and whether
mid-similarity pairs exhibit differentiation, as predicted by the
NMPH. Fig. 2b shows the average representational change

across all models, as a function of pre-learning pair similarity.
The values are computed over occurrences of paired tokens in
context for each learning phase, with error bars indicating the
standard error of the mean across models. During the encod-
ing phase, models show a general downward trend, indicat-
ing that higher similarity leads to more differentiation between
paired items. In contrast, during the consolidation phase, a U-
shaped pattern appears, with mid-similarity pairs (0.6-0.75)
exhibiting significant differentiation. This suggests that once
LLMs stabilize their learning, they obtain a structured repre-
sentational differentiation consistent with the NMPH. However,
in the forgetting phase, this effect disappears as differentia-
tion occurs only for highly similar paired tokens, resembling
the initial encoding phase. This indicates a loss of struc-
tured representational updates, aligning with the decline in
accuracy. These findings suggest that LLMs undergo distinct
encoding, consolidation, and forgetting stages. Notably, the
non-monotonic pattern, where mid-similarity pairs exhibit sig-
nificant differentiation, emerges only during stable consolida-
tion. This structured representational change supports sus-
tained accuracy, suggesting that differentiating mid-similarity
pairs may play a key role in maintaining learned associations.

Discussion and Conclusion

We show that LLMs exhibit non-monotonic representational
change during in-context learning, consistent with the NMPH:
mid-similarity pairs significantly differentiate during consoli-
dation, preserving accuracy through stabilized associations.
This suggests that LLMs may serve as computational models
for memory organizations in humans, offering a framework to
study learning dynamics and representational change. Future
work could test if this mechanism extends to fine-tuning, which
more closely resembles long-term synaptic modification, and
help refine theories of differentiation in both artificial and bio-
logical systems.
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