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Abstract

We are able to perceive spatial structure in the world
around us. This ability supports a range of downstream
behaviours—from navigation to memory retrieval—and is
thought to rely on a network of ‘scene-selective’ corti-
cal structures. Feedforward deep learning models are
often thought to provide a suitable approximation of
these perceptual abilities. This human-model correspon-
dence, however, has largely been evaluated in classifi-
cation tasks. Here we develop a novel behavioural as-
say which reveals a profound gap between these vision
models and human abilities. We collect a corpus of nat-
uralistic scenes (panorama captures from Google maps)
and format these environments into ‘oddity’ tasks: par-
ticipants are presented with two different viewpoints from
one location (A), alongside an image from a different loca-
tion (B), and must identify the odd-one-out (B). Critically,
we manipulate the angular difference between views and
perceptual similarity between environments. Through a
series of experiments, we find that humans substantially
outperform models on this benchmark, and that human
reaction times scale linearly with task difficulty. These
data highlight the temporal dynamics of place recogni-
tion, challenging common assumptions about the feed-
forward underpinnings of this foundational human ability.
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Introduction

Our ability to perceive spatial structure supports a constella-
tion of downstream behaviours—from navigation to episodic
memory, foraging to social behaviours (Epstein & Baker,
2019). Representing this spatial structure is thought to be
supported by scene-selective brain networks (Epstein & Kan-
wisher, 1998; Groen, Silson, & Baker, 2017). Remarkably,
these neural structures have been effectively modelled by
feedforward, deep neural networks (Groen et al., 2018; Con-
well, Prince, Kay, Alvarez, & Konkle, 2024). However, this
human-model alignment is typically evaluated in the context
of classification tasks, which is not always predictive of other
perceptual abilities (Jagadeesh & Gardner, 2022; Bonnen,
Yamins, & Wagner, 2021). Recognizing this, here we develop
a more fine-grained behavioural assay of place recognition
and show a misalignment between humans and vision models
on this task.

We operationalize “view-invariant place recognition” as the
ability to recognize that different views from the same 360°
panorama correspond to the same place. We adopt the odd-
ity task experimental design that has been used to evaluate
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the role of the medial temporal lobe in visual object percep-
tion, to evaluate place recognition behaviour (Barense, Hen-
son, Lee, & Graham, 2010; Lee et al., 2005). In our setup, a
single oddity trial consists of three images, each taken from a
panorama. Two of those images are different views from the
same panorama, and the third image is a view from a differ-
ent panorama (i.e., the odd-one-out). We generate a large
set of oddity trials and compare the accuracy of humans (ob-
tained via online experiments) to that of models, allowing us to
ascertain the conditions under which purely visual represen-
tations are sufficient or insufficient to support view-invariant
place recognition.

Results

Place recognition oddity task experimental setup We
first acquired a set of 1260 panoramas of New York City from
Google maps. Panoramas were taken at different locations;
thus each panorama corresponds to a unique place. An ex-
ample of a flattened panorama is shown in Figure 1A. We
constructed oddity trials from pairs of panoramas (A and B)
using three images, a, a’, and b, where a and a’ were sam-
pled from panorama A and b was sampled from panorama
B (Figure 1B). All images had a field-of-view of 90°. We
varied the difficulty of trials by controlling the angular differ-
ence between a and o/, denoted by 0 in Figure 1C, with
0 € {0°,30°,60°,90°}. Note that when the angular difference
between a and d’ is 90° or greater, there is no visual overlap
between a and @/, so that a strategy that depends solely on
matching visual features may not be sufficient. For each an-
gular difference, we randomly generated 800 problems (i.e.,
panorama pairs) and evaluated a computational proxy of vi-
sual processing (i.e., a convolutional neural network or vision
transformer) on each problem.

Performance of a vision model decreases as the angular
difference between views increases To compute compu-
tational model choice on each oddity trial, we extracted fea-
tures from a penultimate layer of the model for each of the
three images and computed the pairwise similarities between
the three feature vectors using the Pearson’s correlation met-
ric. The model's odd-one-out choice was taken to be the
image with the lowest similarity with the other two images.
By computing model choices for a large number of oddity
problems, we obtained a distribution of model performance
across problems that use different panorama pairs. We found
that performance of a task-optimized convolutional neural net-
work (ResNet-18 trained on image categorization) decreased
as the angular difference between a and o’ increased, and
the variability of performance across problems became larger
(Figure 1D).
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Figure 1: Schematic of a single oddity problem and model
performance across problems. A. Example of a flattened
panorama in the stimulus set. B. Example of an oddity trial
(60° angular difference between images a and a'). The cor-
rect choice is the image on the right (image b). a and a’ were
taken from the panorama shown in panel A. C. Top-down view
of two panoramas (A and B) and sampled views (a, @', and
b). 0 denotes the angular difference between a and o/, and
% denotes the location of the observer. D. Model (ResNet-
18 trained on image categorization) performance across 3200
problems of differing angular difference between a and a’ (300
problems per angle).

Humans outperform a vision model on view-invariant
place recognition We compared model performance to the
performance of human participants who were administered
the oddity task online (N = 90). On each trial, participants
viewed the three images side-by-side (as in Figure 1B) for a
maximum of 10 seconds and chose whether the left, the mid-
dle, or the right image was the odd-one-out (i.e., belonged to
a different panorama). The three images were selected based
on model performance (Figure 1D). Specifically, for each an-
gular difference, we uniformly sampled oddity problems (i.e.,
panorama pairs) across the range of model performance. We
predicted that problems that were easily solved by the models
(i.e., model performance is close to 100%) should be easily
solved by humans. In contrast, we hypothesized that prob-
lems where models struggled to solve would have a larger
range of human performance, with some being easy for peo-
ple, and others being hard. For each angular difference, we
sampled 50 problems that spanned the performance range of
ResNet-18 as uniformly as possible (Figure 2A).

We observed that humans also exhibited a range of perfor-
mance values across these problems. As the problems be-
come more difficult for people, exemplified by problems with
higher angular difference between a and a’ and by reduced
accuracy, they spent more time on the problem (Figure 2B;
B = —2711.75, F(1,145) = —16.93, p = 4 x 107%%). Thus,
the variability across problems was not just a speed-accuracy
tradeoff but instead reflected a true difference in problem diffi-
culty.

We then compared the performance (i.e., accuracy) of hu-
man participants to the performance of ResNet-18 trained
on image categorization (i.e., a computational proxy of visual
processing). We found that human and model performance

were positively correlated (r(145) = 0.65, p = 4.53 x 10~1).
This shows that problems that were more difficult for mod-
els also tended to be more difficult for humans. However,
overall performance was better for humans than for ResNet-
18 when the angular difference between the two views from
the same panorama was 60° or 90° (paired t-tests; 60° an-
gular difference: t(48) = 6.44, p = 5.28 x 10~%; 90° angu-
lar difference: #(48) = 5.15, p = 4.84 x 107°). Inspection of
the plot revealed that this was because human participants
outperformed the model on the most difficult oddity problems
(Figure 2C). We observed a qualitatively similar trend when
DINOv2 was evaluated against human performance (paired t-
tests; 60° angular difference: #(48) = 5.86, p = 4.07 x 1077;
90° angular difference: 1(48) = 2.71, p = 0.009; Figure 2D).
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Figure 2: Comparing human and model performance on view-
invariant place recognition. A. Oddity problems were selected
to uniformly sample the range of model performance. B. Hu-
man reaction time is predicted by performance on the oddity
problem. C. Humans outperform a vision model on difficult
problems. That is, humans do not show as large a drop in
performance as compared to models on increasingly difficult
problems. Here we show performance of ResNet-18 trained
on image categorization. D. Humans outperform DINOv2, a
much larger deep learning model.

Conclusion

Our work provides a novel benchmark to evaluate place
recognition in humans and machines. We find that humans
substantively outperform vision models, and that there are
clear temporal dynamics in human performance. Feedforward
models do not capture critical aspects of place recognition—
findings that are analogous to work on the temporal dynamics
of human 3D shape inferences (Bonnen, Wagner, & Yamins,
2023). These data motivate us to develop novel computational
frameworks that move beyond feedforward visual processing.
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