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Abstract 53 

Bayesian theory prescribes that highly 54 

surprising outcomes should prompt rapid belief 55 

updating. Here we developed a novel passive 56 

belief updating protocol, suitable for humans 57 

and potentially mice. We observed multiple 58 

pupil-based signatures of belief updating: (i) 59 

pupil response magnitude was enhanced for 60 

stimuli that were unexpected given the recent 61 

history, and (ii) the relationship between pupil 62 

response magnitude and Bayesian change-63 

point probability (surprise), derived from a 64 

normative belief updating model, reflected the 65 

participant’s belief about the volatility of the 66 

environment. We conclude that phasic arousal 67 

supports belief updating when encountering 68 

unexpected incoming information. 69 
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Introduction 74 

Most of our decisions are guided by predictions—75 

for instance, opting for a bike over a bus based on 76 

expected travel time and weather. Unexpected 77 

changes, such as roadworks causing delays, can 78 

invalidate these predictions. According to 79 

normative Bayesian theory, highly surprising 80 

outcomes should prompt rapid belief updating, 81 

incorporating new information to improve future 82 

decisions (Glaze et al., 2015; Yu & Dayan, 2005). 83 

Influential computational models suggest that the 84 

locus coeruleus plays a key role in tracking 85 

unexpected changes and facilitating belief updating 86 

(Dayan & Yu, 2006; Jordan, 2023; Sales et al., 87 

2019). Critical experimental data to constrain these 88 

theories is however scarce due to the difficulty to 89 

assay and perturb those systems, especially in 90 

awake animals. Hence, we set out to develop a 91 

passive belief updating protocol, bypassing the 92 

need of active reports, allowing us to efficiently and 93 

precisely study this fundamental building block of 94 

cognition. 95 

 96 

Methods 97 

Human participants (N=20) were exposed to a 98 

novel belief updating protocol, based on a passive 99 

oddball design (standard, 90%; oddball, 10%) using 100 

high- and low-frequency tones (2kHz and 1kHz; 101 

tone duration, 0.5s; inter-tone-interval, 1s; total of 102 

3600 stimuli per participant) (Fig. 1A). Critically, we 103 

introduced (i) two states, defined by their opposite 104 

mapping between the frequencies and probabilities 105 

of the two tones, and (ii) a 5% chance (“hazard 106 

rate”) of a state change after every tone 107 

presentation (Fig. 1B). This ensured that both tones 108 

appeared equally often within a block, and that 109 

oddball status was dependent on the local state 110 

(Fig. 1C). We also considered a visual variant, 111 

which was identical except the two stimuli were now 112 

clockwise and counter-clockwise oriented Gabor 113 

patches (Fig. 1A). Throughout, we measured pupil 114 

size at constant luminance as a marker of 115 

ascending arousal, including noradrenergic activity 116 

(de Gee et al., 2017; Joshi & Gold, 2020). We used 117 

a Bayesian belief updating model (Glaze et al., 118 

2015) (Fig. 1D) to describe the accumulation of 119 

samples (stimuli) that carry information (in the form 120 

of log-likelihood ratios) about the two possible 121 

states and to compute sample-by-sample change-122 

point probability, a common measure of surprise 123 

(Murphy et al., 2021).  124 

 125 

Results 126 

Pupil response magnitude was larger for state-127 

dependent oddballs vs standards in the auditory 128 

domain (Fig. 1E, top) but not in the visual domain 129 

(Fig. 1E, bottom). Specifically, there was a 130 

significant interaction between the effects of tone 131 

identity and state on the tone-evoked pupil 132 

response (difference of differences compared 133 

against 0 with a Wilcoxon test): p<0.001. With a 134 

“many standards control” experiment we ruled out 135 

the alternative hypothesis that enhanced pupil 136 

responses to local oddballs were merely due to 137 

(bottom-up) stimulus-specific adaptation. We next 138 

generated a sequence of sample-by-sample 139 

change-point probabilities that an ideal observer 140 

would exhibit, by feeding the observed log-141 

likelihood ratios into the belief updating model 142 

(Methods) using a “subjective hazard rate” that 143 

matched the generative one: P(state 144 

change)=0.05. Tone-evoked pupil responses 145 

linearly reflected change-point probability (Fig. 1G). 146 

We then computed the same relationship between 147 

pupil response magnitude and change-point 148 

probability for different subjective hazard rates (Fig. 149 

1H). We found that this correlation peaked for a 150 

subjective hazard rate that matched the generative 151 

one and was significantly higher than hazard rates 152 

>= 0.25. 153 

 154 

 155 
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Discussion 157 

The observed state-dependent differences in pupil 158 

response magnitude to the same auditory stimulus 159 

led us to the conclusion that after state changes 160 

participants update their belief about which tone to 161 

expect next. So far, participant’s beliefs about the 162 

volatility of the environment (subjective hazard rate) 163 

were estimated through their choice behavior in 164 

active change point detection tasks (Glaze et al., 165 

2015; Murphy et al., 2021). Strikingly, here we 166 

achieved the same using pupillometry in a passive 167 

protocol, which is suitable for human and mouse 168 

observers. In ongoing work, we aim to characterize 169 

the involvement of specific neuromodulatory 170 

systems in belief updating, using multi-fiber 171 

photometry in primary auditory areas in mice and 172 

brainstem fMRI (7T) in humans. Our results will 173 

provide the much-needed empirical data to close 174 

the gap between computational theory of belief 175 

updating and its underlying biological mechanisms. 176 

 

 
Figure 1. (A) Stimuli. (B) The probability of state change (“hazard rate”) was 0.05 after every tone 

presentation. (C) Example sequence of states and stimuli. (D) Schematic illustration of the Bayesian 

belief updating model (Methods). (E) Pupil response (first derivative) time-locked to each stimulus, 

separately for states and stimuli, and separately for the auditory and visual domain. Grey window, 

interval for computing stimuli-wise pupil response magnitudes. (F) Pupil response magnitude interaction 

between stimulus and state identity. (G) In the auditory domain, relationship between pupil response 

magnitude and change-point probability (4 bins). (H) As G, but for sample-by-sample correlation, and 

separately for different subjective hazard rates (see main text). Red line, generative hazard rate. Panels 

E-H: shading or error bars, S.E.M. across participants (N=20). 
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