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Abstract
Understanding how neuronal populations interact to pro-
cess information and generate behavior is a central goal
of neuroscience. However, high dimensionality, dense in-
teractions, and unobserved factors complicate this task.
The neuronal manifold hypothesis suggests that relevant
dynamics occur on a lower-dimensional manifold, but it
offers limited insight into the interactions among subsys-
tems. We introduce a BunDLe-Net-based architecture that
embeds distinct neuronal populations into separate latent
dimensions. By leveraging BunDLe-Net’s Markovian em-
bedding, we ensure that every point in the latent space
retains predictive information about future behavioral dy-
namics. We apply our method to C. elegans neuronal data
categorized into sensory, motor, and interneurons. The
manifold not only reveals recurring motifs in the dynam-
ics but also shows how different populations orchestrate
these motifs. From the manifold, we can read off which
populations encode information and drive the dynamics
in each behavioral state. Thus, we present a powerful vi-
sual tool that reveals how information is processed and
relayed across populations.

Keywords: neuronal manifolds; population dynamics; behav-
ior; modular neural systems; neural representations.

Introduction
Advances in data collection techniques have significantly im-
proved our ability to record brain activity at unprecedented
scales. However, transforming this raw data into insights
about how the brain processes information is challenging
and requires extensive analysis. Recently, neuronal manifold
learning has emerged as a powerful approach for interpreting
high-dimensional neuronal recordings (Mitchell-Heggs, Prado,
Gava, Go, & Schultz, 2023). These methods map neu-
ronal data onto low-dimensional manifolds for improved inter-
pretability.

While some approaches utilize standard dimensionality re-
duction techniques (Cunningham & Yu, 2014; Gao et al.,
2017), others specifically address the time-series nature of
neuronal data, embedding it in a way that respects temporal
dynamics (Kumar, Gilra, Gonzalez-Soto, Meunier, & Grosse-
Wentrup, 2024; Schneider, Lee, & Mathis, 2023; Pandarinath
et al., 2018). Unlike most methods that reconstruct or simulate
neuronal activity, BunDLe-Net selectively discards information
irrelevant to behavioral dynamics (Kumar et al., 2024). This
yields a minimal behavioral model that reveals bundled tra-
jectories, where the branching structure of dynamics reflects
behavioral motifs. This branching is unique to BunDLe-Net,
as it isolates relevant dynamics while filtering out noise.

Despite these advances, current methods fail to capture
the interplay of neuronal populations and how they interact
to process information. Most existing methods embed all neu-
rons jointly in a latent space, leading to entangled representa-
tions that obscure the distinct roles of individual populations.
Those that do learn disentangled representations, do so with-
out modeling interactions between the populations (Kobak et

al., 2016; Miller, Eckstein, Botvinick, & Kurth-Nelson, 2024).
To address these limitations, we propose an approach that
endows each latent dimension with interpretability by associ-
ating it with a known subsystem of interest. Specifically, we
embed the neurons from each subsystem into distinct dimen-
sions of the latent space, while allowing for temporal interac-
tions between them. This separation allows us to disentangle
the contributions of each subsystem, providing a clearer un-
derstanding of how different populations interact to process
information and orchestrate behavior.

We apply our method to calcium imaging data from C. el-
egans neurons, recorded alongside behavioral data (discrete
behavior based on the locomotor state of the worm) (Kato et
al., 2015). For our analysis we utilise neuron categories from
(Kaplan, Nichols, & Zimmer, 2018) and partition the identified
neurons into three subsets: X (1) for sensory neurons, X (2) for
interneurons, and X (3) for motor neurons.

Architecture for learning Markovian
representations

Let Xt represent the global neuronal state at time t, and de-
fine a mapping τ : Xt 7→ Yt , where Yt is a lower-dimensional,
coarser latent representation of Xt . Let TY denote the temporal
transition model at in the latent space. BunDLe-Net learns a
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Figure 1: BunDLe-Net architecture for interacting populations

latent representation that 1) preserves behavioral information
2) preserves dynamical information pertaining to the behavior,
and in doing so respects the temporal causality of the system
(Grosse-Wentrup, Kumar, Meunier, & Zimmer, 2023). In the
neural network architecture, 1) is achieved by requiring behav-
ior B to be decodable from Y through the predictor layer. 2) is
achieved by requiring that embedding the time-evolved state

Xt+1
τ−→ Yt+1 or time evolving the embedding Xt

τ−→ Yt
TY−→ Yt+1

yield the same result. This is enforced by upper and lower arm
of architecture in Figure 1 respectively.

The original BunDLe-Net architecture performed the em-
bedding τ jointly on all neurons. In this work, to study inter-
acting populations, we embed each of subsystems separately
to a distinct dimension of latent space. We modularize the τ

layer to incorporate three non-overlapping mappings denoted
by τ(1), τ(2) and τ(3). These mappings operate on the vectors
X (1), X (2), and X (3) respectively. The same three τ(i) are ap-



plied to both Xt and Xt+1, ensuring a consistent embedding
across time steps. Note that, though we embed subsystems
separately, we later pass the embedding to a joint transition
model. This allows our embedding to model interactions be-
tween the subsystems.

Results

Figure 2: BunDLe-Net embedding of C. elegans neuronal data
where each dimension corresponds to a specific subset of
neurons. The behavioral state is denoted by color.

Figure 2 shows the embedding of worm neuronal activity
in a three-dimensional1 latent space where each of the axes
correspond to a neuronal population. The manifold shows a
branching topology, indicating that the BunDLe-Net architec-
ture has successfully abstracted the neuronal representation
of behavior. Note that while the behavior is discrete, the neu-
rons encode it in a continuous representation that is unknown
to the external behavior annotator. Since we embed each pop-
ulation to a separate dimension, the fact that the manifold is
still three dimensional (rather than on a plane, line or point) in-
dicates that all three populations globally encode for behavior
and play a part in information processing. This aligns with ex-
isting knowledge in neuroscience concerning C. elegans neu-
ronal circuitry (Kaplan et al., 2018).

We see that the trajectories are bundled together and, while
they merge and branch, the bundles never intersect each an-
other for different behaviors. This is on account of the Marko-
vian embedding which ensures that maximum predictive infor-
mation about both the behavior and its future state are pre-
served in this embedding.

From the manifold (Figure 2), we can read-off not only
which populations encode for behavior but also which popu-
lations drive the dynamics. Firstly, note how certain behaviors
are projected along a specific direction or confined to a given
plane (see animated 3D plot). For example, we see that the
slowing and sustained reverse are separated along inter-
neurons axis. Secondly, notice how the trajectory changes its
orientation with axes through time. For example, the reverse-1

and reverse-2 behaviors are primarily aligned along the

1The dimensionality of three is specific to the BunDLe-Net method
and always works for discrete behaviors. It is not related with the task
dimensionality or the dimension of the null-space

interneuron axis, while the dorsal turn is initiated on the sen-
sory neuron axis. To quantify how much different populations
contribute to driving behavior, we present Figure 3
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Figure 3: Populations that drive behavioral dynamics. From
the BunDLe-Net trajectory, we see that certain behaviors
show dynamics along specific directions. This indicates that
certain populations are more responsible in driving a given be-
havior. We quantify this by looking at the absolute of the sum
of direction vectors for a given behavior.

Discussion
The resulting manifolds allows us to make statements such
as, The dynamics is initiated in population X (1), which then
relays the information to population X (2); the information is
then shared with X (3) which jointly orchestrates the behavior
B with X (2), and so on.... From such embeddings, one can
thus read-off interactions between various subsystems, their
relationships with one another, and the flow of information be-
tween them.

Our method can be of great practical significance to the
experimentalist since the manifold can not only help deciding
which populations to stimulate in order to induce a behavioral
motif, but also when to stimulate. For example consider the
branching point in the manifold at sustained reverse . Even
before the future behaviors (dorsal and ventral turn ) are
externally observed, the trajectory bifurcates. This means the
internal neuronal representation has already been set on a
deterministic path to one of the behaviors. Thus one should
ideally stimulate at the bifurcation and not after. We also see
how dorsal turn initiation → plays out on the sensory axis,
whereas the ventral turn initiation → initiation involves
motor neurons.

https://docs.google.com/document/d/e/2PACX-1vQ22FrCgp7IM9bdyjFz7Od9uKcPW-bdHxWDZvvnaPuTHVKWEDxzZpa7NF8RLzT6YWTsGtiaKy3zMmGM/pub
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