
Neural heterogeneity shapes the temporal structure of human working memory

Daria Kussovska (dnk2118@columbia.edu)
Department of Biomedical Engineering, Columbia University

New York, NY 10027, USA

Nuttida Rungratsameetaweemana (nr2869@columbia.edu)
Department of Biomedical Engineering, Columbia University

New York, NY 10027, USA



Abstract
The circuit computations that support memory mainte-
nance in humans remain poorly understood. Persistent
activity has long been thought to underlie the mainte-
nance of information in working memory (WM). However,
most supporting evidence has relied on trial-averaged
neural responses, often overlooking the potential role
of cellular heterogeneity. To address this, we analyzed
single-trial spiking activity from intracranial recordings
of neurosurgical patients performing a WM task. We
developed a method for putative cell-type classification
and examined the temporal dynamics of interneurons and
pyramidal cells across encoding and maintenance task
phases. Our findings reveal distinct cell-type-specific ac-
tivity profiles during working memory maintenance and
suggest that stimulus-specific information can be re-
tained with minimal persistent firing, highlighting flexible
and potentially energy-efficient circuit computations that
support information storage in the human brain.
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Introduction
Working memory (WM) provides temporary storage of infor-
mation, crucial for everyday tasks, such as learning, language
comprehension, and decision-making. Persistent firing of in-
dividual neurons across distributed brain areas during reten-
tion intervals has been viewed as a primary mechanism for
memory maintenance (Fuster & Alexander, 1971; Kamiński et
al., 2017). However, sustained spiking is metabolically costly.
Much supporting evidence relies on trial-averaged data and
often assumes network homogeneity, with limited consider-
ation of cell-type specificity or synaptic interactions shaping
cortical dynamics (Lundqvist et al., 2018; English et al., 2017).
Thus, it remains unclear how heterogeneous neuronal popu-
lations in the human brain maintain information over time.

To address this gap, we analyzed human intracranial
recordings during a WM task, focusing on single-trial dynam-
ics. We developed an approach for putative cell-type clas-
sification to examine how distinct neuronal populations con-
tribute to memory-related dynamics. Our findings suggest
that stimulus-specific information can be maintained without
sustained spiking during the maintenance period, supporting
alternative accounts of activity-silent mechanisms within re-
current cortical circuits (Stokes, 2015). Moreover, we show
that cell types exhibit distinct temporal profiles across task
phases, suggesting specialized roles in information mainte-
nance. These findings advance our understanding of WM and
underscore the value of cell-type-resolved, temporally agnos-
tic analyses for uncovering the circuit dynamics that support
human cognition.

Methods
To investigate the circuit computations supporting WM repre-
sentations in the human brain, we used a dataset of 902 single

cells recorded from neurosurgical patients with epilepsy dur-
ing a Sternberg WM task (Fig. 1; Kyzar et al., 2024).
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Figure 1: Location of recording sites in MNI space.

For putative cell-type classification, we first extracted au-
tocorrelogram (ACG) features from each cell’s spike train
through a triple-exponential function. Cells were then clus-
tered using spectral clustering on firing rate, mean ACG, and
τ rise values, which have been found to exhibit robust dif-
ferences between interneurons (IN) and pyramidal cells (PY)
(Csicsvari et al., 1998; Dickey et al., 2021). To ensure reliabil-
ity, we tested our method on a reference dataset (Petersen et
al., 2021), yielding 97% accuracy. Firing characteristics were
compared across cell types.

To identify bursts of spiking activity, we extended an ap-
proach introduced in a recent study (Xie et al., 2024). For
each cell, spike times were concatenated across trials and an-
alyzed separately for the encoding and maintenance periods.
Using cells grouped by ACG features (mean ACG and τ de-
cay), and by cell type (IN and PY), we binned spikes at 70 ms
and smoothed with a Gaussian kernel (σ = 40 ms); bursts
were defined as local peaks exceeding the top 10% in promi-
nence. As a null model, we generated surrogate spike trains
using a Poisson process matched to the firing rate of each
cell, repeated 100 times. Burst counts from real and surrogate
data were compared across participants using paired t-tests
or Wilcoxon signed-rank tests, with the Benjamini/Hochberg
false discovery rate (FDR) correction for multiple comparisons
(Benjamini & Hochberg, 1995).

To decode the encoded stimulus identity across task peri-
ods, we constructed cross-temporal decoding maps using a
support vector machine (SVM) with leave-one-out cross val-
idation (LOOCV) (Meyers, 2013). Binned activity was ex-
tracted from pyramidal and interneuron cells that had been
previously classified as concept cells (Quiroga, 2012).

Results
While persistent dynamics in the maintenance period can be
observed through averaging activity across population of cells
(bootstrap test on paired differences, p < 0.05), this does not
necessarily reflect how individual cells maintain information
independently over time (two-sample t-test, p < 0.05).

After spectral clustering (Fig. 2C), from the 902 cells, 92
were identified as pyramidal (PY; 10.20%) and 202 as in-
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Figure 2: (A-B) Spike autocorrelogram (ACG) of an example
pyramidal cell (PY) and an interneuron (IN). (C) PY and IN
form separate clusters based on mean ACG, firing rate, and
ACG tau rise. (D) Box plots comparing features of PY and IN.

terneurons (IN; 22.39%). Our clustering effectively distin-
guished bursty from non-bursty cells, as revealed by burst
index and coefficient of variation squared (CV2) measures
(Mann–Whitney U test, all ps < 0.05; Fig. 2D), reflecting dis-
tinct temporal dynamics of activity with possible contributions
to WM.

Bursting analysis indicated that during encoding, only cer-
tain subpopulations, especially low ACG cells (W=0, p =
0.004) and PY cells (W=0, p= 0.009), exhibit temporally clus-
tered activity that exceeds stochastic firing. Other cells ap-
peared to follow a Poisson-like activity (Wilcoxon signed-rank
test, p > 0.01), suggesting that encoding in these cells may
rely more on rate coding or other mechanisms rather than
burst firing. However, during maintenance, all subgroups of
cells demonstrated structured bursting, implying coordinated,
non-random dynamics (Wilcoxon signed-rank test, p < 0.01)
(Fig. 3A). Decoding analyses using concept PY and IN cells
revealed differences in how each cell type contributes to the
representation and maintenance of stimulus information over
time (Fig. 3B).

Discussion
Our findings demonstrate that while prominent persistent ac-
tivity is observed when averaging across trials and neurons,
these dynamics may not fully capture the mechanisms un-
derlying working memory maintenance at the single-trial level.
Our cell classification analysis yielded notable results, show-
ing higher bursting and CV2 values for pyramidal cells, which
are in line with empirical studies in rodents (Raus Balind et al.,
2019). These findings highlight the utility of cell-type-specific
analyses in generating improved understanding of circuit com-

putations that underlie human cognitive processes.
Importantly, we observed distinct effects in bursting dynam-

ics across neuronal subtypes during working memory. While
encoding was characterized by relatively stochastic, Poisson-
like firing patterns, the maintenance period showed a marked
increase in structured, burst-like activity across the neural
population. This shift suggests a dynamical reorganization in
how information is carried during memory maintenance. Fi-
nally, decoding analyses revealed distinct temporal profiles
between interneurons and pyramidal cells, suggesting com-
plementary roles in the representation and maintenance of
stimulus-specific information. In line with emerging theories,
our findings provide cellular-level evidence for activity-silent
schemes in WM. This emphasizes the role of more dynamic,
computationally-efficient strategies for maintaining information
over time.
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Figure 3: (A) Burst counts for different neuronal subgroups
during encoding and maintenance. Error bars represent stan-
dard error of the mean (SEM). (B) Decoding analysis on
PY and IN concept cells. White circles indicate decodability
higher than chance (p < 0.05).

Limitations and Broader Impacts
One limitation of the current work is the absence of ground
truth labels for human cells as pyramidal cells or interneurons,
which naturally constrains the interpretation of our cell-type-
specific results. While we cannot definitively confirm the iden-
tities we assigned to these cells, our findings suggest that dis-
tinct populations may contribute differently to working memory
maintenance. These functional distinctions, shaped by prop-
erties like connectivity patterns, firing dynamics, and temporal
profiles, provide a useful lens for thinking about how the brain
efficiently maintains information beyond models that assume
homogeneity across cells. More broadly, our findings highlight
the importance of moving beyond homogeneous assumptions
to consider diverse cellular contributions in studying the circuit
dynamics underlying cognition.
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