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 Abstract 
 Neural  response  selectivity  is  a  long-standing 
 phenomenon  in  cognitive  neuroscience,  with 
 distinct  cortical  areas  selectively  responding  to 
 visual  categories  across  processing  stages.  Such 
 selectivity  is  typically  quantified  using  measures 
 ranging  from  simple  response  ratios  to  detailed 
 statistical  comparisons  between  preferred  and 
 non-preferred  categories.  But  how  consistent  and 
 stable  are  these  measures?  And,  critically,  does 
 selectivity  capture  behavioral  relevance?  Recent 
 computational  studies  have  shown  that  both 
 trained  and  untrained  deep  neural  networks 
 (DNNs)  exhibit  category-selective  units.  Here, 
 using  face  selectivity  as  our  test  case,  we  leverage 
 DNNs  to  systematically  compare  a  broad  range  of 
 selectivity  metrics  while  assessing  their  relevance 
 to  task  performance.  Our  results  reveal  low 
 agreement  between  selectivity  metrics  and 
 lesioning-based  rankings,  and  the  consistency 
 among  metrics  varies  with  spatial  scale, 
 processing  stage,  and  training.  However,  all 
 metrics  yield  similar  face  decoding  accuracy. 
 These  findings  caution  against  overreliance  on 
 any  single  metric  and  inform  the  interpretation  of 
 selectivity in computational and neural data. 
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 Introduction 
 Neural  response  selectivity  has  long  been  established 
 in  visual  neuroscience.  For  example,  face-selective 
 cortical  areas—regions  that  respond  more  to  faces 
 than  to  other  visual  categories—have  been  identified 
 across  various  processing  stages  and  developmental 
 periods  (Kanwisher,  2017).  Metrics  used  to  localize 
 these  selective  areas  range  from  simple  response 
 ratios  to  detailed  statistical  comparisons  between 
 preferred  and  non-preferred  categories  (Stigliani  et  al., 
 2015).  Despite  their  widespread  use,  a  systematic 
 comparison  of  these  metrics  has  proven  challenging 
 due to the inherent limitations in neural data. 

 Recently,  deep  neural  networks  (DNNs)  have 
 emerged  as  promising  models  for  testing 
 neuroscience  tools  and  probing  the  underpinnings  of 
 neural  selectivity  (Lindsay  &  Bao,  2023;  Ratan  Murty 
 et  al.,  2021).  Face-selective  units  have  been  identified 
 in  DNNs  using  selectivity  metrics  similar  to  those  used 
 in  brain  studies  (Baek  et  al.,  2021;  Dobs  et  al.,  2022; 
 Lee  et  al.,  2020;  Prince  et  al.,  2024).  However,  despite 
 the  variety  of  measures  adopted  in  DNN  analyses, 
 their  consistency  and  stability,  and  particularly  their 
 link to behavior, remain unclear. 

 In  this  study,  we  focus  on  face  selectivity  and  use 
 DNNs  as  an  idealized  testing  ground  to  systematically 
 compare  a  broad  spectrum  of  selectivity  metrics. 
 Taking  advantage  of  the  fully  observable  and 
 perturbable  nature  of  these  models,  we  compare  these 
 metrics  with  lesioning  approaches  and  use  identity 
 decoding  as  proxy  for  behavioral  relevance.  We  further 
 examine  how  the  consistency  among  selectivity 
 measures varies across network layers and training. 

 Methods 
 DNN  models.  We  used  a  dual-task  VGG-16  network 
 pretrained  for  simultaneous  face  recognition  and 
 object  categorization  (Fig.  1a;  Dobs  et  al.,  2022).  We 
 selected  this  DNN  because  it  exhibits  functional 
 specialization  for  faces,  with  a  distinct  set  of 
 face-specific  kernels  whose  lesioning  selectively 
 impairs  face-task  performance.  In  addition,  we 
 included  another  DNN  trained  on  the  same  tasks  and 
 saved  its  initial  checkpoint  at  random  initialization, 
 allowing  us  to  measure  the  consistency  of  selectivity 
 in trained and untrained networks. 

 Face  selectivity  metrics.  Face  selectivity  was 
 evaluated  on  the  fLOC  functional  localizer  dataset 
 (Stigliani  et  al.,  2015)  for  both  individual  units  and 
 convolutional  kernels.  At  the  kernel  level,  unit 
 activation  was  aggregated  using  three  summary 
 statistics:  mean  activation,  L2-norm,  and  max 
 activation.  We  compared  four  established  selectivity 
 metrics  based  on  activations  extracted  after  ReLU  in 
 convolutional  layers:  (1)  Face  Selectivity  Index  (FSI), 
 identifying  units  with  responses  at  least  twice  as 
 strong  to  faces  as  to  non-face  stimuli  (FSI>0.3);  (2) 
 d-prime  selectivity,  applying  a  selectivity  criterion  of 
 d′>0.65;  (3)  Wilcoxon  rank-sum  test,  a  non-parametric 
 test  identifying  units  that  significantly  prefer  faces  over 
 all  other  classes  (p<0.001);  and  (4)  t-test-based 
 selectivity,  involving  pairwise  comparisons  between 
 faces  and  multiple  non-face  categories  at  the 
 individual  unit  level,  followed  by  intersection  across 
 categories  using  an  FDR-corrected  significance 
 threshold (p<0.05). 

 Measuring  consistency.  To  assess  agreement 
 among  selectivity  metrics,  in  each  layer  we  calculated 
 pairwise  Spearman  rank  correlations  between  metrics. 
 Specifically,  for  a  given  metric  A,  we  rank  all  units  or 
 kernels  by  their  selectivity  values  (e.g.,  t-values),  then 
 compute  Spearman’s  correlation  between  that  ranking 
 and  the  continuous  selectivity  values  from  metric  B 
 (e.g. d’) for the same items. 

 Face  identity  decoding.  To  probe  behavioral 
 relevance,  we  trained  linear  support  vector  machine 
 (SVM)  classifiers  to  decode  face  identity  from  the 
 l2-norm  aggregated  activations  of  selected  kernels.  To 
 control for differences in the number of selected 



 Figure  1:  a.  Dual-task  VGG-16  architecture  used  to  identify  face-selective  units  via  multiple  metrics  and  lesioning. 
 Percentage  of  face-selective  b.  units  and  c.  kernels  per  metric  and  aggregation  method.  d.  Metric-lesioning 
 Spearman  correlation  for  conv13  kernels  (l2-norm).  e.  Face  identity  decoding  accuracy  using  selected  kernels  in 
 conv13  (equal  kernel  count).  Error  bars:  95%  CI  across  cross-validation  folds.  f.  Mean  inter-metric  Spearman 
 correlation across layers for trained (red) vs. untrained (blue) DNNs. Error bars: SEM across metric pairs. 

 kernels,  this  analysis  was  restricted  to  the  minimum 
 number  of  kernels  identified  across  metrics  (N=96). 
 SVMs  were  trained  on  a  dataset  of  100  face  identities 
 (10  images  each)  using  leave-one-image-out 
 cross-validation.  Decoding  accuracy  serves  as  a 
 proxy  for  how  well  each  selectivity  metric  identifies 
 kernels contributing to task performance. 

 Results 
 We  first  analyzed  the  percentage  of  face-selective 
 responses  across  five  layers  (conv2,  conv4,  conv7, 
 conv10,  conv13)  for  both  individual  units  (Fig.  1b)  and 
 aggregated  kernels  (Fig.  1c).  At  the  unit  level,  FSI 
 identified  up  to  20%  of  units  as  face-selective, 
 substantially  more  than  those  identified  by  the 
 Wilcoxon  test,  t-test,  and  d-prime  methods  (max.  3%). 
 In  contrast,  at  the  kernel  level,  d-prime  metric  was 
 most  sensitive,  identifying  up  to  35%  of  kernels  as 
 selective.  Moreover,  when  comparing  kernel  summary 
 statistics,  mean  aggregation  consistently  resulted  in 
 fewer  selective  kernels  than  the  L2  norm  or  maximum 
 value.  Notably,  only  FSI  showed  a  clear  increase  in 
 selectivity with deeper layers. 

 To  determine  which  metric  best  aligns  with 
 lesion-based  ranking  of  face-selective  kernels,  we 
 correlated  the  ranks  of  kernels  identified  by  each 
 metric  with  those  obtained  from  lesioning.  FSI 
 approximated  the  lesioning  ranks  most  closely  (  r  = 
 -0.29;  Fig.  1d).  In  contrast,  the  Wilcoxon  test,  t-test, 
 and  d-prime  metrics  showed  similar  ranking  patterns 
 to  each  other,  yet  these  were  distinct  from  both  the 
 lesioning and FSI rankings. 

 Next,  we  evaluated  the  behavioral  relevance  of 
 the  selected  kernels  by  decoding  face  identity  from 
 their  activations  (Fig.  1e).  Controlling  for  the  number 
 of  selected  kernels,  decoding  accuracy  was  highly 
 similar  across  all  metrics.  This  result  suggests  that 
 each  captures  comparable  task-relevant  information 
 despite differences in selectivity rankings. 

 Finally,  we  examined  whether  training  and 
 network  depth  affected  the  consistency  among 
 selectivity  metrics  at  the  unit  level  (Fig.  1f).  Mean 
 inter-metric  consistency  was  higher  in  the  trained 
 network  than  in  the  untrained  one  from  mid-level  layer 
 conv7  onward.  Moreover,  consistency  increased  with 
 layer  depth  only  in  the  trained  network,  suggesting 
 that training consolidates representational stability. 

 Conclusion 
 Our  results  reveal  the  complex,  scale-dependent 
 nature  of  selectivity  metrics  in  DNNs.  We  found  that 
 different  metrics  can  dramatically  differ  in  the 
 proportions  of  identified  face-selective  units  or  kernels, 
 and  that  inter-metric  consistency  depends  on 
 processing  stage  and  training.  While  all  metrics 
 yielded  comparable  task-relevant  information  in 
 identity  decoding,  only  FSI  exhibited  a  continuous 
 increase  in  face  selectivity  across  layers  and  aligned 
 most  closely  with  lesioning-derived  rankings.  Future 
 work  should  investigate  other  category  selectivities 
 and  diverse  network  architectures  to  test  generality. 
 Overall,  our  findings  offer  key  insights  into  selecting 
 and  interpreting  selectivity  measures  and  underscore 
 the  need  for  careful  metric  choice  in  computational  and 
 cognitive neuroscience. 
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