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Abstract 

Theoretical accounts of goal-directed action disagree 

on whether actions are represented by their motor 

commands or sensory outcomes. Here we use a 

novel analysis technique combining linear decoding 

of EEG data with representational similarity analysis 

to shed light on this matter. Preliminary findings (n=5) 

show that it is possible to track neural conjunctive 

representations that integrate goals, actions, and 

sensory outcomes over time during goal-directed 

action, which can be related to learning outcomes. 

These findings help pave the way towards a 

mechanistic understanding of how the brain plans 

actions to reach goals. 

Keywords: action planning; active inference; 

EEG; representational similarity analysis. 

Introduction 

Goal-directed action is commonly defined as grounded in 

knowledge about action-outcome contingencies 

(Dickinson & Balleine, 1994). However, there are different 

theoretical viewpoints about how the brain plans goal-

directed actions to attain desired outcomes. Motor 

command theories state that actions are represented and 

planned in terms of motor output, by an inverse model that 

converts sensory goals to motor commands (Todorov, 

2004; Wolpert & Kawato, 1998). These motor commands 

are then fed to a forward model to compute their expected 

sensory outcomes (Franklin & Wolpert, 2011). According 

to this viewpoint, learning mainly involves the optimization 

of the inverse mapping between goals and actions 

(Wolpert & Flanagan, 2010). On the other hand, active 

inference states that goal-directed actions are 

represented and planned in terms of their sensory 

consequences (Adams et al., 2013). This viewpoint 

predicts that learning mainly involves the integration of 

actions and their sensory outcomes (Proietti et al., 2023), 

similar to the formation of ‘event files’ that include goals, 

actions, and outcomes (Hommel, 2004).  

The aim of the current study is to determine 

whether goal-directed action planning fundamentally 

incorporates sensory outcomes by examining if action 

learning is associated with the development of highly 

integrated, conjunctive representations using EEG. 

Participants performed goal-directed actions in order to 

generate specific sensory outcomes (Figure 1). Using a 

novel analysis technique combining linear decoding with 

representational similarity analysis, we could track the 

representational strength of several task features over 

time, as well as their non-linear integration into high-

dimensional conjunctive representations (Badre et al., 

2021; Kikumoto & Mayr, 2020). These conjunctive 

representations have previously been shown to play a 

critical role in flexibly responding to stimuli. Here, we 

extend this work by investigating their role in goal-directed 

action-outcome learning. 

Methods & Results 

Experimental paradigm   Participants had to generate 

specific sensory outcomes (Figure 1). These outcomes 

were defined by 2 independent features: their shape 

(circle or star) and spatial frequency (high or low). In every 

block, each unique outcome was mapped to one of 4 

locations on the screen. Participants could generate 

outcomes by moving a white square horizontally 

(left/right) or vertically (up/down) towards the location of 

the outcome they aimed to generate. Importantly, they 

first needed to learn the location-outcome mapping (i.e., 

the relationships between stimuli, actions, and outcomes) 

in a given block before they could generate the correct 

outcomes. Each block, the location-outcome mapping 

would switch between 4 possible mappings, such that 

Figure 1. A Trial structure. B Overview of all 16 trial 

combinations for one location-outcome mapping. To 

orthogonalize stimulus location and outcome location, 

these combinations are divided into 2 sets. 



each outcome appeared equally often in each location 

over the course of the experiment. On each trial, 

participants were given a goal feature to generate (e.g., 

circle), after which a white square occurred on one of the 

4 screen locations. The participant then had to generate 

an outcome with the goal feature by pressing one of two 

buttons on the keyboard (‘X’ or ‘M’, corresponding to 

‘horizontal’ or ‘vertical’, action mapping counterbalanced 

between participants).  

Preliminary data   We so far collected behavioral and 

EEG data from 5 participants (all female, mean age = 

21.6; data collection ongoing, final sample n=40) over 2 

sessions per participant. Each session consisted of 2 

practice blocks of 64 trials and 12 experimental blocks of 

at least 160 trials, or until performance in the last 16 trials 

exceeded 85%. 

EEG recording   EEG activity was recorded from 64 

electrodes (10-20 system). Data was digitized at 512 Hz 

and down-sampled to 128 Hz. For preprocessing, data 

was re-referenced to the average of the mastoids, high-

pass filtered at 0.01 Hz, and eye-blink artifacts were 

removed using ICA. Finally, data was epoched between -

600 ms and 800 ms around stimulus presentation. 

Data analysis   A combination of linear decoding and 

representational similarity analysis (Kriegeskorte et al., 

2008) was used to track the dynamic representation of 

task features and their conjunction over time, following the 

procedure by Kikumoto & Mayr (2020). Using the ADAM  

toolbox (Fahrenfort et al., 2018), we trained a linear 

discriminant classifier to discriminate between each of the 

32 different trial combinations in each set with 5-fold 

cross-validation. This classification resulted in a 32-by-32 

confusion matrix for each trial and timepoint, which were 

log-transformed before serving as the input for RSA.  

We constructed RSA models for the goal, 

stimulus location, action, outcome identity, location-

outcome mapping, and their conjunction (Figure 2). In 

addition, we controlled for possible differences in difficulty 

between conjunctions by adding a predictor with subject-

specific conjunction RTs. Results from this analysis 

indicate that we can successfully track the 

representational strength of individual task features and 

their conjunction over time (Figure 3). 

We plan to relate RSA predictor values to trial-to-

trial performance and RT with multilevel linear modeling 

in a larger sample, to determine whether the strength of 

conjunction representations predicts learning 

performance. 

Conclusion 

The current study aimed to investigate whether goal-

directed actions are represented by motor commands or 

sensory outcomes. First results show that by combining 

linear decoding with RSA, we can track dynamic neural 

representations during goal-directed action. This will 

allow us to arbitrate between competing hypotheses from 

motor command theories and active inference, enhancing 

understanding of how humans learn to reach their goals. 

 

Figure 3. Results of combined LDA-RSA analysis 
indicate that we can track the strength of  neural 
representations over time. 

Figure 2. RSA models. 
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