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Abstract
Concreteness, the degree to which a concept refers to
a perceptible entity, plays a key role in psycholinguistic
models of bilingualism. They suggest that concrete con-
cepts are more similarly represented across languages
than abstract concepts. Yet, most of these studies used
only behavioral data and controlled stimuli. Thus, it is un-
clear how similarity of representations across languages
relates to concreteness in the brain of bilingual speakers.
To address this question, we analyzed functional mag-
netic resonance imaging (fMRI) recordings of Chinese-
English bilinguals reading narratives translated in both
languages using voxelwise encoding models. We used
semantic features aligned between English and Chinese.
We measured whether each voxel represents more con-
crete or abstract concepts in each language, and how
similar these concepts are across languages. Our re-
sults show that similarity of representations across En-
glish and Chinese is high for both concrete and abstract
concepts.
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Introduction
Several psycholinguistic models of bilingualism highlight the
role of concreteness, suggesting that concrete concepts are
more similarly represented across languages than abstract
concepts (De Groot, 1992; Pavlenko, 2009). This is sup-
ported by behavioral studies showing faster translation time
(Basnight-Brown & Altarriba, 2016) or stronger cross-lingual
priming (Ferre et al., 2017) for concrete words. However,
these studies did not consider brain activity and only used
controlled stimuli. Studies that use natural stimuli reveal a
more extensive set of cortical regions involved in representa-
tions of language (Hamilton & Huth, 2020). Thus, it is unclear
how similarity of representations across languages relates to
concreteness in the bilingual brain. To address this question,
we used voxelwise encoding models (VM) (Wu et al., 2006;
Naselaris et al., 2011). We measured the preference for con-
crete or abstract concepts in each language (concreteness
tuning) and the similarity of semantic representations across
languages (cross-language similarity ).

Methods
fMRI was used to measure blood-oxygen-level dependent
(BOLD) responses in six participants while they read a set
of narrative stories translated in English and Chinese (Huth et
al., 2016; De Heer et al., 2017; Deniz et al., 2019; Chen et al.,
2024). To map cortical representations, we used VM. Feature

Figure 1: Voxelwise encoding framework. (A) Estimation
and evaluation of voxelwise encoding models. (B) Measure-
ment of concreteness tuning. (C) Measurement of cross-
language similarity.

spaces that represent the semantic content of the stimulus
words were extracted. We used fastText vectors aligned be-
tween English and Chinese (Bojanowski et al., 2017; Joulin
et al., 2018). We also replicated our results with multilingual
BERT (Devlin et al., 2019). The contribution of low-level sen-
sory features was regressed out from the BOLD responses.
Model weights that reflect the semantic information repre-
sented in each voxel were estimated using ridge regression
for each language separately (Figure 1-A). The prediction ac-
curacy of the model was evaluated as the coefficient of de-
termination between the predicted response and the recorded
response on a held-out stimulus narrative.

We identified a dimension in fastText space that separates
abstract to concrete semantics (Grand et al., 2022) using
words rated as highly concrete or highly abstract (Brysbaert
et al., 2014; Xu & Li, 2020). We measured concreteness tun-
ing for each voxel in each language by projecting its estimated
model weights onto this concreteness dimension (Figure 1-B).
We measured cross-language similarity for each voxel by cor-
relating its English and Chinese model weights (Figure 1-C).

Results
Concreteness tuning is shared across languages In both
languages, posterior regions in the temporal and parietal cor-
tices are tuned to concrete concepts (red voxels in Figure 2-A).
Regions typically associated with language such as Broca’s
area, high-level auditory cortex and the superior temporal sul-
cus are tuned to abstract concepts (blue voxels). This sug-
gests that concreteness tuning is shared across languages.



Figure 2: Concreteness tuning in English and Chinese. (A) Concreteness tuning in English (top) and Chinese (bottom) is
shown for one representative participant on their cortical surface. Voxel hue indicates the value of concreteness tuning ranging
from abstract (blue) to concrete (red). Voxels with a low prediction accuracy in the semantic model are shown in gray (

√
R2 < 0.1).

(B) Comparison of concreteness tuning in English (x-axis) and Chinese (y-axis) in a scatterplot for the same representative

participant as in (A). Each point represents a voxel that is well predicted in either language (
√

R2
en > 0.1 or

√
R2

zh > 0.1).

Figure 3: Cross-language similarity and concreteness tuning. (A) Cross-language similarity between English and Chinese
semantic representations is shown for the same representative participant as in Figure 2 on their cortical surface. Voxel hue
indicates the value of the Pearson correlation coefficient ranging from low similarity (dark blue) to high similarity (bright yellow).
(B) Comparison of concreteness tuning (x-axis) and semantic similarity (y-axis) in a scatter plot for the same representative
participant as in (A).

Cross-language similarity is high for both concrete
and abstract concepts Cross-language similarity is high
throughout the temporal, parietal and pre-frontal cortices in
both concrete regions and abstract regions (Figure 3-A). Fig-
ure 3-B shows that voxels with a stronger concreteness tun-
ing (in either direction) have greater cross-language similarity.
This suggests that the more concrete or the more abstract
a concept is, the more similarly it is represented across lan-
guages.

Conclusion

This study investigated how the similarity of brain represen-
tations across languages relates to the concreteness of con-
cepts. We find that representations are similar across English
and Chinese for both concrete and abstract concepts. Our
results partly challenge psycholinguistic models which predict
higher cross-language similarity for concrete concepts.
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