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Abstract
Current linearizing encoding models that predict
neural responses to sensory input typically neglect
neuroscience-inspired constraints that could enhance
model efficiency and interpretability. To address this,
we propose a new method called affine feature response
transform (AFRT), which exploits the brain’s retinotopic
organization. Applying AFRT to encode multi-unit ac-
tivity in areas V1, V4, and IT of the macaque brain, we
demonstrate that AFRT reduces redundant computations
and enhances the performance of current linearizing
encoding models by segmenting each neuron’s receptive
field into an affine retinal transform, followed by a
localized feature response. Remarkably, by factorizing
receptive fields into a sequential affine component with
three interpretable parameters (for shifting and scaling)
and response components with a small number of
feature weights per response, AFRT achieves encoding
with orders of magnitude fewer parameters compared to
unstructured models. We show that the retinal transform
of each neuron’s encoding agrees well with the brain’s
receptive field. Together, these findings suggest that this
new subset within spatial transformer network can be
instrumental in neural encoding models of naturalistic
stimuli.
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Introduction
Neural encoding models aim to map sensory stimuli to neu-
ral responses and are a central tool in systems neuro-
science (van Gerven, 2017). A popular strategy is to extract
features from deep networks trained on vision tasks and map
them to neural activity using a linear readout (Yamins et al.,
2014; Güçlü & van Gerven, 2015; St-Yves & Naselaris, 2018;
Khosla, Jamison, Kuceyeski, & Sabuncu, 2022; Kell, Yamins,
Shook, Norman-Haignere, & McDermott, 2018; Kay, Nase-
laris, Prenger, & Gallant, 2008). However, many of these mod-
els ignore key spatial constraints observed in biological vision.

Recent work incorporates biologically motivated induc-
tive biases such as spatial locality and structured receptive
fields (Kietzmann et al., 2019; Banino et al., 2018; Khosla,
Ngo, Jamison, Kuceyeski, & Sabuncu, 2020). For example,
fwRF models (St-Yves & Naselaris, 2018) and spatial-feature
decoupling (Wang et al., 2020) encourage more interpretable
feature mappings.

We introduce the Affine Feature Response Transform
(AFRT), a compact model that learns a small spatial crop as a
stand-in for a neuron’s receptive field. This crop is used to ex-
tract localized CNN features. Each transformation is defined
by simple shift and scale parameters, which makes the model
both efficient and easy to interpret.

Methods
We model each neural response using features from a local-
ized region of the image, rather than the full frame. A learn-

able affine transformation—parameterized by horizontal shift
(tx), vertical shift (ty), and isotropic scale (s)—selects a region,
which is then passed through a pretrained CNN feature ex-
tractor. This mimics the spatial specificity of receptive fields in
visual cortex.

The cropped region is resampled via bilinear interpola-
tion and processed by the CNN. Features are reduced to a
1×1×C vector and linearly mapped to predict the neural re-
sponse. Formally, for image s and transformation T , the pre-
dicted response is fθ(s) = w⊤φ(T (s)), where φ denotes the
CNN and w are linear weights. Both w and T are optimized
via gradient descent to minimize mean squared error.

This approach reduces per-neuron parameters to under
7,000, improving efficiency and interpretability by constraining
the model to spatially meaningful input regions.

Experimental data We used the THINGS ventral stream
spiking dataset (TVSD) (Papale, Wang, Self, & Roelfsema,
2025), comprising recordings from 1024 electrodes (V1, V4,
IT) in a macaque viewing 25,248 naturalistic images from the
THINGS database (Hebart et al., 2019). Images (500× 500
px) were shown in rapid 4-image sequences (200 ms on/off),
shifted to the lower-right fovea.

Multi-unit activity (MUA) was time-averaged and normal-
ized per channel (Burns, Xing, & Shapley, 2010). Reliability
was assessed via pairwise correlations across 30 repetitions
of 100 test images, and channels with mean reliability < 0.4
were excluded, resulting in 667 signals used for decoding.

Modeling and Evaluation We trained our Affine Feature
Response Transform (AFRT) model on the TVSD dataset.
AFRT applies a learnable spatial transformation to each
stimulus, followed by feature extraction using a pretrained
AlexNet (Güçlü & van Gerven, 2015). Features from Conv1–
5 are linearly mapped to neural responses. A linear baseline
model without spatial warping was also trained for compari-
son.

Models were trained on 22,348 stimuli and evaluated on
100 repeated test images using Pearson correlation. For
each MUA signal, the best-performing layer (Conv1, Conv2,
or Conv5) was selected, and the corresponding affine-
transformed region defined the effective receptive field.

Results and Discussion
We evaluated AFRT on multi-unit activity (MUA) recorded
from macaque visual areas V1, V4, and IT during natural im-
age viewing. Compared to conventional CNN-based encod-
ing models, AFRT improved prediction accuracy while signifi-
cantly reducing the number of learnable parameters per neu-
ron.

AFRT improves accuracy with fewer parameters

Despite relying on compact, site-specific spatial transforma-
tions, AFRT outperforms strong baselines in predicting MUA
responses. Figure 2 compares test-set correlation scores be-
tween AFRT and two baselines across all brain areas. Each
point corresponds to a single MUA site.



Figure 1: Schematic overview of the AFRT model. Each neuron learns a spatial crop of the input image via a learnable affine
transform (scale and translations). The transformed image is passed through a CNN and spatially collapsed, and the resulting
feature vector is linearly mapped to predict the response.

Figure 2: MUA site-wise test-set correlation for AFRT vs.
baselines. Left: AFRT vs PCA-based baseline. Right: AFRT
vs bilinear-resized input baseline. Each point is one MUA site
across V1, V4, and IT. Red dashed line indicates equal per-
formance.

The left panel compares AFRT to a model that uses PCA-
reduced AlexNet features and a linear response layer. The
right panel compares AFRT to a baseline using bilinear-
resized inputs. In both comparisons, AFRT consistently
achieves equal or better performance, particularly for low-
SNR sites. While baseline models use tens or hundreds of
thousands of parameters per site, AFRT achieves these re-
sults using fewer than 7,000 parameters by enforcing spatial
locality.

AFRT recovers hierarchical receptive field structure

To assess whether AFRT captures biologically plausible spa-
tial structure, we visualized the learned affine transformations
as receptive field crops. These image regions correspond to
the most predictive spatial input per site. As shown in Fig-
ure 3, receptive fields become larger and more diffuse from

Figure 3: Learned receptive field crops across brain regions.
Each square is one site’s affine crop; color encodes model
performance (Pearson R on the test set). White squares show
regional means.

V1 to IT, mirroring known receptive field scaling in the ventral
stream.

Notably, this retinotopic organization emerges without any
spatial supervision. Early visual areas (e.g., V1) yield small,
tightly localized crops, while downstream regions (e.g., IT) ex-
hibit broader, overlapping selections. This pattern validates
AFRT’s spatial inductive bias.

Occasionally, large receptive fields appear in V1 as well,
possibly reflecting the fact that MUA signals pool over small
neural populations. In such cases, AFRT may learn to attend
to a broader region to capture shared or overlapping activity.

Summary
AFRT improves neural encoding performance while dramati-
cally reducing model complexity. Its inductive bias toward lo-
calized spatial input supports both predictive accuracy and bi-
ological plausibility. Despite being simple and lightweight, the
model recovers known organizational principles of the visual
cortex, making it a compelling approach for large-scale neural
system identification tasks.
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