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Abstract
We propose a biologically grounded computational model
of predictive coding (PC) that integrates a neuroanatomi-
cally informed hierarchy of cortical areas with laminar or-
ganization and cell-type-specific connectivity. The model
performs PC on naturalistic images through Hebbian
learning and prediction error minimization. The model
assumes that stereotypical pyramidal-PV-SST-VIP circuits
with the same structure but different bottom-up and top-
down inputs compute positive and negative prediction
errors. Sensory inference in the model generates neu-
ral oscillations, with simulations of optogenetic inactiva-
tion revealing distinct roles for PV, SST, and VIP cells in
these dynamics. Furthermore, the model exhibits mis-
match negativity-like responses to deviant stimuli. This
work offers a biologically plausible framework for under-
standing the neural circuits underlying PC in the cortex.
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Introduction
The brain faces the challenge of inferring the properties of
objects from inherently noisy sensory signals. Predictive cod-
ing (PC) (Rao & Ballard, 1999; Mumford, 1992; Srinivasan,
Laughlin, & Dubs, 1982) views the brain as an inference ma-
chine that constantly generates an internal model of the world
and minimizes the discrepancies between predicted and ac-
tual sensory inputs (i.e. prediction error). Although PC princi-
ples have been extensively explored at a theoretical level, their
biological plausibility within cortical circuits is still largely lack-
ing. Recent experimental findings (Attinger, Wang, & Keller,
2017; Hertäg & Clopath, 2022; Keller & Mrsic-Flogel, 2018)
have shown the crucial role of different inhibitory interneuron
subtypes, such as PV, SST, and VIP cells, in the calculation
and propagation of prediction errors. To address this gap, our
study presents a biologically grounded computational model
of visual perception based on PC. This model uniquely inte-
grates neuroanatomically informed projections between corti-
cal areas with precise laminar organization and the diversity of
cell types characteristic of sensory cortex neural circuits, aim-
ing to provide a more mechanistic understanding of predictive
processing in the brain.

Methods
Neurons followed a linear firing rate model (Wilson & Cowan,
1972): τ dri/dt = −ri + f (∑ j Wi j r j ). The model consisted
of two cortical areas (Fig. 1A): Area 1 received bottom-up
sensory input in layer 4 and top-down predictions from Area
2 to compute prediction errors in layer 2/3; Area 2 encoded
internal representations using pyramidal and PV cells. A key
element was the identification of a canonical microcircuit mo-
tif (composed of pyramidal, PV, SST, and VIP cells) for pre-
diction error computation through an exhaustive combinatorial
search that explored numerous potential within-circuit connec-
tivity (among the four neuron types) and synaptic input pat-
terns (bottom-up sensory inputs and top-down predictions).

This search was constrained by established neurobiological
principles (Bastos et al., 2012; Pfeffer, Xue, He, Huang, &
Scanziani, 2013; Pennartz, Dora, Muckli, & Lorteije, 2019),
such as pyramidal cells receiving bottom-up input and VIP
cells receiving top-down input. For our study, we randomly
selected one of the 173 resulting combinations of within-
circuit connectivity and synaptic input patterns to illustrate the
general principles of prediction error computation within our
model. This circuit exclusively computes either positive or
negative prediction errors (Lee, Dora, Mejias, Bohte, & Pen-
nartz, 2024) based on the specific pattern of bottom-up and
top-down input received by its constituent cells. The synap-
tic weights between Area 1 and Area 2 were plastic and
learned using the Hebbian learning rule with grayscale CIFAR-
10 images, while the within-microcircuit weights, determined
by combinatorial search, remained fixed.

Results

The model effectively predicted novel naturalistic images af-
ter training, demonstrating the successful learning of an in-
ternal model. Notably, oscillatory dynamics emerged in both
representation and prediction error microcircuits (Fig. 1B), re-
flecting the temporal dynamics of error minimization, consis-
tent with experimental findings (Alamia & VanRullen, 2019).
These oscillatory dynamics persisted even during an oddball
paradigm (Fig. 1C), where a deviant stimulus (D) within a
sequence of repeating standard stimuli (S) elicited increased
neural activity (mismatch negativity-like response) in both rep-
resentation and prediction error microcircuits. Note that these
oscillations dampened over time and converged to zero in pre-
diction error circuits and a stable focus in representation cir-
cuits, indicating error minimization and the formation of latent
representations, respectively. Selective inactivation of each
cell type in the network, mimicking optogenetic experiments,
revealed that interneurons have differential roles in PC (Fig.
1D): while PV provides a blanket of inhibition, dampening net-
work activity, SST and VIP serve to control the amplitude of
neural oscillations and the number of cycles between repre-
sentation and error neurons in opposing directions.

Conclusion

A novel cortical network model with a laminar and cell type-
specific architecture is proposed, demonstrating the capacity
to perform perceptual inference and learning of sensory input.
In particular, rhythmic activity spontaneously emerged during
the propagation of predictions and errors. We dissected the
contribution of different types of cortical neurons to the gener-
ation of prediction error (Lee, Pennartz, & Mejias, 2024).
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Figure 1: Cortical column model of predictive coding. (A) Schematic of the cortical column model showing laminar organization
and the division into prediction error and representation circuits. (B) Population activity of pyramidal cells in representation (Rep;
purple), positive (PE+; red), and negative (PE-; blue) prediction error microcircuits exhibited rhythmic responses to naturalistic
images. As prediction errors declined, Rep activity stabilized, supporting improved reconstructions (top images). The highlighted
area in green shows stable phase relationships between PE+ and PE- (bottom arrow), PE- and Rep (middle), and PE+ and Rep
(top). (C) Activity of L5/6 pyramidal cells in Rep (purple) and L2/3 pyramidal cells in PE+ and PE- (red and blue) during an oddball
sequence (e.g., truck and bird images). Prediction errors decreased over time through inference. Repetition of the standard
stimulus (S) led to lower initial errors and faster convergence, while repeated exposure also accelerated Rep stabilization.
Deviant stimuli (D) evoked heightened PE activity and distinct steady-state representations. (D) Optogenetic silencing of PV,
SST, or VIP interneurons revealed their distinct roles. Panels show firing rates of L2/3 pyramidal cells in PE+ and PE- (red and
blue) under control and silenced conditions. In control, prediction errors declined over time. Silencing PV cells resulted in a
continuous increase of pyramidal cell firing rates in both PE+ and PE- circuits and rid of oscillatory behavior. Silencing SST cells
disrupted prediction error minimization, while silencing VIP cells shut down both PE circuits.
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