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Abstract
3D perception is essential for both biological and artifi-
cial vision, supporting navigation, object interaction, and
scene understanding. However, learning 3D structure
in a self-supervised manner is challenging because fully
structured geometric methods impose rigid constraints
that limit adaptability to natural videos, while unstruc-
tured, data-only approaches lack geometric consistency
and struggle with controllability. We investigate a bal-
anced approach that starts with minimal priors and pro-
gressively builds structured representations, using opti-
cal flow as an intermediate representation to infer depth
and subsequently 3D shape, integrating flexibility with
geometric consistency. Using this framework, we demon-
strate that our model performs competitively on 3D per-
ception tasks from a single image, achieving human-
level depth estimation and supporting shape inference
beyond visible surfaces. Beyond accuracy, we examine
the model’s biological relevance. Our results indicate that
depth perception develops rapidly when learning from
camera motion, similar to early visual learning in humans.
These findings support a middle ground between struc-
tured and unstructured learning, providing a biologically
plausible path for self-supervised 3D perception.
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Introduction
3D perception is fundamental to vision, enabling biological
organisms to navigate, interact with objects, and understand
their surroundings. It is also a key capability for artificial vision
systems.

A central question in 3D vision is whether core components
such as depth and shape perception require strong structural
priors, for example geometric constraints and camera models,
or whether they can emerge from data alone. Fully structured
approaches rely on explicit geometric reasoning and 3D rep-
resentations (Yu, Ye, Tancik, & Kanazawa, 2021; Tewari et
al., 2023), but impose constraints that limit their applicability
to natural video. Conversely, unstructured models (Z. Wang
et al., 2024) aim to learn directly from raw observations, yet
often struggle with geometric consistency and controllability.

We propose a hybrid framework that combines the flexibil-
ity of unstructured learning with the controllability of structured
reasoning. An autoregressive video model is trained with-
out geometric priors, using optical flow obtained from natu-
ral video as an intermediate cue. Structure is reintroduced at
inference time by computing flow from estimated depth and
camera motion, which enables controllable 3D inference.
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Our framework builds on Counterfactual World Modeling
(CWM) (Bear et al., 2023), which showed that optical flow
can be extracted from unstructured predictors. We extend
this idea to demonstrate that higher-level 3D representations,
specifically depth and shape, can also emerge.

We evaluate our model on two core tasks from a single im-
age, depth estimation and shape completion through novel
view synthesis, and analyze the developmental trajectory of
depth learning. Our model achieves human-level depth esti-
mation (Zuo et al., 2024), infers coherent 3D shape represen-
tations, and exhibits a learning trajectory that parallels human
depth development.

Motion cues, particularly those arising from self-motion,
play a critical role in the emergence of depth perception
(Gibson & Walk, 1960). Our model provides a computa-
tional example of this process, showing that depth can emerge
rapidly from motion-based learning signals and offering in-
sights for both artificial and biological vision.

Method

Our model builds on the Probabilistic Structure Integrator
(PSI), an autoregressive multimodal visual world model in-
spired by Counterfactual World Modeling (CWM) (Bear et al.,
2023). PSI consists of an unstructured base predictor and a
set of structured prompting programs that extract intermediate
3D representations.

The unstructured base predictor is an autoregressive trans-
former trained to predict the next RGB frame from the current
frame. It is worth noting that optical flow can be extracted
from this base model using structured prompting, following
CWM. We train a flow predictor to estimate optical flow con-
ditioned on camera pose changes, and a flow-to-RGB predic-
tor, finetuned from the RGB predictor, that generates the next
frame conditioned on flow and the input image. Conditioning
RGB generation on flow provides controllable and geometri-
cally consistent RGB generation.

We introduce structured prompting programs during infer-
ence to extract depth, perform novel view synthesis, and sup-
port 3D shape reconstruction. Depth is extracted by applying
controlled in-plane camera motion, which induces optical flow
whose magnitude is inversely related to scene depth. Novel
view synthesis is performed by warping the depth map to ob-
tain a target flow field, followed by RGB generation. For 3D
shape extraction, we generate novel RGB views from a sin-
gle input image and use these views as input to an exter-
nal multi-view reconstruction method (S. Wang, Leroy, Cabon,
Chidlovskii, & Revaud, 2024) to obtain full 3D geometry.

PSI was trained in a self-supervised manner on approxi-
mately one year of diverse, publicly available internet videos



and multi-view datasets with camera poses, including Scan-
Net++, CO3D, MVImgNet, and RealEstate10K. We used
RAFT (Teed & Deng, 2020) to precompute optical flow, used
to supervise the flow predictor and condition the flow-to-RGB
predictor during training. The RGB model has 7 billion param-
eters and the flow predictor has 1 billion. Both models operate
on tokenized RGB and flow representations. During inference,
PSI models generate tokens autoregressively, conditioned on
RGB, camera poses, or flow fields.

Results
We evaluate our model’s capacity for 3D understanding
through two core tasks, monocular depth estimation and
shape completion via novel view synthesis, and analyze how
depth perception emerges during training.

Monocular Depth Estimation

We first assess the model’s ability to estimate depth from a
single image, using the UniQA-3D benchmark (Zuo et al.,
2024). This task involves determining which of two points in
an image is farther away, providing a cognitively relevant mea-
sure of depth understanding. Figure 1 shows that our model
achieves human-level accuracy on upright images and gen-
eralizes well to flipped images, demonstrating robustness in
geometric reasoning. These results support the hypothesis
that structured depth representations can emerge from a min-
imally structured base model guided by optical flow cues.

Figure 1: Quantitative Evaluation of Depth Estimation on
UniQA-3D. Our model matches human-level performance on
upright images and generalizes well to flipped images, indi-
cating robust depth understanding.

3D Shape Understanding through Novel View
Synthesis

To evaluate the model’s ability to infer complete 3D structure,
we use novel view synthesis as an intermediate step toward
3D shape completion. Given a single input image, we first ex-
tract depth, then synthesize novel views at new camera poses,
and finally use these views to reconstruct 3D shape with an
external multi-view method (S. Wang et al., 2024).

Figure 2 illustrates how our model’s synthesized novel
views reveal occluded scene regions and object parts, en-
abling more complete 3D reconstruction. This demonstrates
that the model captures not only visible surfaces but also plau-
sible amodal structure, a key feature of human 3D perception.

Figure 2: 3D Shape Completion through Novel View Syn-
thesis. Novel views synthesized from a single image reveal
occluded regions and enable more complete shape recon-
struction, supporting amodal 3D understanding.

Developmental Plausibility
Finally, we analyze the developmental trajectory of depth per-
ception in our model. Motion cues are known to contribute to
depth learning in biological systems (Gibson & Walk, 1960;
Held & Hein, 1963). We measure how depth understanding
emerges during training and find that the model acquires ro-
bust depth estimation early in training, after limited data expo-
sure corresponding to about one month of awake time. This is
consistent with the rapid development of depth perception in
biological systems and highlights the effectiveness of optical
flow as a learning signal for 3D structure.

Figure 3: Developmental trajectory of depth perception.
Depth understanding emerges early in training with limited
data in a flow-based learning framework, consistent with the
rapid development of depth perception in biological systems.

Conclusions
Our results show that 3D perception can emerge from a hy-
brid model combining unstructured learning with structured
optical flow and depth reasoning. This work offers a step to-
ward building models that acquire 3D scene understanding
from natural video in a developmentally plausible way.
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