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Abstract
Cognitive computational neuroscience strives to develop
models that achieve both biological and cognitive fi-
delity. Propelled by the success of deep neural net-
works (DNNs) in emulating human functional capacities
and neural representations, the field increasingly utilizes
DNNs for generating, testing, and refining theories of the
neurocomputational processes. However, these neuro-
connectionist models often lack neuroanatomical detail
and neuronal population dynamics, factors that provide
important constraints on the neurocomputational solu-
tion space. To address this, we introduce a biophysics-
informed neuroconnectionist modeling approach with
powerful learning capabilities. Our approach constructs
neural networks from laminar-resolved cortical columns
with neuroanatomically-realistic internal connectivity. In
a proof of concept, we show that these networks can
be succesfully trained to reproduce firing rates of neu-
ronal populations in a perceptual decision-making task
and achieve high accuracy in classification tasks. This
work demonstrates the feasibility of embedding func-
tion in biophysics-informed models and introduces a new
class of neuroconnectionist models striking a meaningful
balance between biological realism and cognitive func-
tion.
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Introduction
Computational neuroscience knows two dominant ap-
proaches: bottom-up (biology-driven) and top-down (function-
driven) modeling. DNNs have increasingly been used to inte-
grate these approaches and achieve both biological and cog-
nitive fidelity, a key challenge in the field (Kriegeskorte & Dou-
glas, 2018). The value of DNNs lies in their incorporation of
brain-inspired computational principles, combined with an un-
precedented ability to solve perceptual tasks (Hassabis, Ku-
maran, Summerfield, & Botvinivk, 2017; Kriegeskorte, 2015;
Kaligh-Razavi & Kriegeskorte, 2014; Yamins & DiCarlo, 2016).
However, these networks often ignore neuroanatomical prop-
erties such as the connectivity structure of local neural circuits
and neuronal cell densities. No distinction between excitatory
and inhibitory populations are made, thereby amalgamating
excitatory and inhibitory interactions and violating Dale’s law.

In response, we introduce a biophysics-informed model-
ing approach. We use laminar-resolved cortical column net-
works with empirically-derived, brain-region-specific internal
connectivity profiles and with realistic mean field population
dynamics. The resulting networks essentially consist of cou-
pled differential equations, and are trainable with the adjoint
method originally developed for training neural ordinary dif-
ferential equations (neural ODEs) (Chen, Rubanova, Betten-
court, & Duvenaud, 2019). The adjoint method executes back-
propagation by solving a second neural ODE backwards in
time, thus turning training into a continuous-time process and
avoiding the drawbacks of backpropagation through time.

Methods

Mean field dynamics of cortical columns Our approach to
modeling the cortical column builds upon the dynamic mean
field (DMF) model of a cortical microcircuit for bistable per-
ception, as described and developed by Evers, Peters, and
Senden (2023). The DMF implementation simulates the firing
rates of eight neuronal populations in a cortical column, struc-
tured in four cortical layers, L2/3, L4, L5 and L6. Each layer
contains an excitatory and inhibitory population. The empiri-
cally derived intralaminar connectivity is adopted from Potjans
and Diesmann (2014). This internal connectivity structure en-
sures targeted excitation and inhibition between cortical layers
within a single column.

During training, external connections between the modeled
columns are established and adjusted to minimize loss on
the specified task. For both of our use cases, the internal,
empirically-derived connectivity of the columns remain fixed
during training. This approach ensures a high level of biologi-
cal realism while training the network in a goal-driven manner.

Two-alternative forced choice dynamics As a first use
case, we test whether a two-column network can reproduce
the winner-take-all dynamics typical of perceptual decision
making. The network is trained to minimize the loss be-
tween its L2/3 excitatory (L2/3e) firing rates and an effec-
tive inhibition decision-making model without layer separa-
tion as a training target (Wong & Wang, 2006). L2/3e is
chosen as the readout layer, as activity in superficial corti-
cal layers has been shown to determine perceptual decision
outcomes (Changdrasekaran, Peixoto, Newsome, & Shenoy,
2017). While the model by Wong & Wang simulates lateral
intraparietal (LIP) firing rates, the resulting winner-take-all be-
havior can be applicable to other brain areas than LIP. For our
two-column network, middle temporal (MT) neuronal popula-
tion counts are used to learn lateral connectivity and repro-
duce perceptual decision-making dynamics.

Two types of connections can be learned: (1) lateral inhibi-
tion connections from the excitatory population in L2/3 (L2/3e)
to the inhibitory population (L2/3i) in the neighboring column
and (2) self-excitation connections in L2/3e in the same col-
umn. Input currents are randomly initialized in range [15, 40],
with relatively small differences between them (small relative
evidence) to ensure that the learned connectivity is essential
to exhibit winner-take-all behavior.

XOR classification As a second use case, we test whether
a small network of our columnar units can be trained on clas-
sification tasks rather than continuous activity. A three-column
network is trained for XOR classification, where targeting in-
hibitory populations in neighboring columns enables learning
nonlinear functions like XOR.

The input currents the model receives are chosen as either
0Hz or approximately 20Hz to represent input types 0 and 1,
respectively. The two input currents are passed to the excita-
tory (L4e) and inhibitory (L4i) populations in columns A and B.
Input currents are weighted by learnable feedforward weights,



which represent the number of synapses x synapse strength
between the presynaptic and postsynaptic columns. The firing
rates of the excitatory population in L2/3 (L2/3e) of columns A,
B is passed to layers L4e and L4i of the final column C. The
feedforward weights from A and B to C are again learnable pa-
rameters. The final firing rates of L2/3e in column C serve as
the model’s output and are used for optimization with respect
to the XOR targets (0, 1). Figure 1A shows the architecture of
the network.

Results
Two-alternative forced choice decision-making Figure 2
shows firing rates across cortical layers for varying levels
of relative evidence. Winner-take-all dynamics are success-
fully reproduced in L2/3, with clear firing rate separation
for all nonzero relative evidence levels. L2/3 also shows
faster and more pronounced divergence with increasing rel-
ative evidence, consistent with findings in superficial layers by
Changdrasekaran et al. (2017). This relationship persists in
L4 and L5, while L6 does not show elevated firing for the dom-
inant column. Instead, L6 exhibits reduced decision-related
activity, aligning with Changdrasekaran et al. (2017). Overall,
these results demonstrate that meaningful behavior emerges
across all layers, even when training only targets L2/3.

Figure 1: (A) Three-column network architecture able to per-
form XOR classification after learning the feedforward weights
in green. Weights targeting the excitatory L4 population are
colored in blue and those targeting the inhibitory population
are colored in red. (B) XOR test accuracy for different random
initializations, shown in distinct colors.

XOR classification Figure 1B shows rapid XOR accuracy
convergence and no indication of local minima, showing feed-
forward weights are effectively learned to solve XOR. Figure

Figure 2: Laminar differences in decision-related firing rates
in excitatory populations (averaged and normalized). Colors
show the range of relative evidence from high (red) to low (pur-
ple). Solid lines represent the high-evidence column, dashed
lines the low-evidence column.

1A shows a model solution for the feedforward weights. In this
solution, column A has a higher excitatory-to-inhibitory (E-I)
ratio than column B for both inputs, allowing it to activate with
just one input at 20Hz. Column B, with a lower E-I ratio, re-
quires both inputs to be active for significant output. Column
A then excites column C (also via a high E-I ratio), while input
from column B tends to inhibit it. Functionally, this results in
column A computing the OR case, column B the AND case,
and column C the OR-and-not-AND case, successfully imple-
menting the XOR operation. These results demonstrate that
the learned connectivity is both functional and interpretable,
offering a window into how neural circuits might implement
logical operations like XOR.

Conclusion
Here we provide proof of concept that our modeling approach
can achieve functional competence by learning a connectiv-
ity structure between cortical columns in two examples. The
first example shows that the model can learn to reproduce
typical dynamics observed in two-alternative forced choice
tasks. The second example shows that the approach re-
mains compatible with supervised learning procedures fre-
quently employed in neuroconnectionism, and allows inter-
pretation of learned weights. Together, these use cases also
show that functional feedforward and lateral connections be-
tween columns can be learned while intra-columnar connec-
tions remain fixed. These results suggest potential for scaling
to larger networks requiring layer-specific connectivity, such
as those based on predictive coding or models of mental im-
agery and visual perception.
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