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Abstract
The Bayesian Brain hypothesis suggests that the brain
can be understood in terms of Bayesian computations.
While many studies have provided perceptual and sen-
sorimotor evidence for this hypothesis, the question of
whether neural responses can also be understood in
Bayesian terms remains open. Answering this question
requires the specification of two main unknowns: (1) what
is the generative model that relates the variables inferred
by some population of neurons to the sensory observa-
tions, and (2) what is the “neural code”, i.e. what is
the relationship between posterior beliefs and neural re-
sponses? Much attention has been directed at answer-
ing the second of these questions while ignoring the first
question, however without reaching consensus. At least
in part this is because a given set of observed neural
responses can imply different codes under different as-
sumptions about the generative model. Here, we propose
answering both questions in the opposite order. First, we
present a method to test a given generative model us-
ing metamers – stimuli that give rise to the same pos-
terior under this model – and confirming that they elicit
the same neural responses. This approach can be in-
terpreted as a special case of representational similar-
ity analysis, and generalized accordingly. Second, we
propose a “mixture method” that tests whether the rela-
tionship between posteriors for different stimuli matches
the relationship for the measured neural responses to the
same stimuli. If applied to the full response distribution,
model and data are only expected to match for neural
sampling codes. If applied to average neural responses,
they are expected to match for any linear distributional
code, including neural sampling and distributed distri-
butional codes, but not probabilistic population codes.
We illustrate our approach using simulations where the
ground truth is known – both for a sparse coding model
of V1, and a hierarchical motion model for area MT.

Keywords: Bayesian brain, perceptual inference, probabilis-
tic population code, distributed distributional code, neural sam-
pling code

Extended abstract
The empirical observation that sensory perception and sen-
sorimotor behavior are often close to optimal (Knill & Pouget,
2004; Trommershäuser, Maloney, & Landy, 2008) has raised
the question of whether the neural responses underlying
those percepts and behavior can also be explained in
Bayesian terms (Fiser, Berkes, Orbán, & Lengyel, 2010;
Pouget, Beck, Ma, & Latham, 2013; Lange, Shivkumar, Chat-
toraj, & Haefner, 2023). If that is the case, then the relation-
ship between stimulus (the brain’s observation o) and neural
responses, r, can be modeled as inference in a generative
model z → o and a linking hypothesis about how the resulting
posterior p(z|o) is related to r (“neural code”) (Fig. 1). No
consensus exists about either ingredient, and most research

to date has tried to test hypotheses about the representation
(e.g. Neural Sampling Codes (NSC) (Fiser et al., 2010) vs Dis-
tributed Distributional codes (DDC) (Vértes & Sahani, 2018)
vs Probabilistic Population Codes (PPC) (Ma, Beck, Latham,
& Pouget, 2006)) making an assumption about the specific
z represented by some neurons, or population of neurons:
e.g. motion direction (Beck et al., 2008), intensity of image
features (Hoyer & Hyvärinen, 2002; Orbán, Berkes, Fiser, &
Lengyel, 2016; Haefner, Berkes, & Fiser, 2016), location of
self (Ujfalussy & Orbán, 2022) etc. However, it has become
clear that the conclusions drawn from this approach are sen-
sitive to the assumed z, and that a different assumption about
the nature of z (i.e. the generative model) might lead to a
different conclusion (Shivkumar, Lange, Chattoraj, & Haefner,
n.d.; Haefner, Beck, Savin, Salmasi, & Pitkow, 2024). The
only existing approaches that avoided this problem tested the
relationships between posteriors for different stimuli to the re-
lationships between responses for the corresponding stimuli:
either for natural stimuli (Berkes, Orbán, Lengyel, & Fiser,
2011) in a way that does not constrain the generative model,
or for task-related stimuli in a way that constrains neither gen-
erative model nor the representation (Lange & Haefner, 2022).
Our work generalizes and extends these prior approaches al-
lowing for both the testing and comparison of candidate gen-
erative models, and for the testing and comparing of differ-
ent hypotheses about the way probabilities are represented in
neural responses.
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Figure 1: Testing Bayesian models using neural data. o,
r, z, p(·) denote sensory observations, neural activity, brain’s
true latent variables, and probability distribution, respectively.

The Metamers method relies on the fact that for sufficiently
complex generative models there will be many different stim-
uli/observations for which the (marginal) posterior over some
latent variable (or subset of such variables) will be the same.
For instance, in the case of a sparse coding model (Olshausen
& Field, 1997), the posterior over a single latent feature will
be the same for a wide range of stimuli with different combi-
nations of orientation, spatial frequency, contrast, etc. (ap-
proximately all those for which the inner product of projec-
tive field and image is the same). Or for a motion model
which hypothesizes that the brain computes relative motion,
the posterior over relative velocity will be the same for many
combinations of center and surround velocity (Fig. 2A). If the
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Figure 2: Methods for gener-
ating neural predictions from
Bayesian models. A-B: The in-
sets on top represent example
center-surround motion stimuli.
Colored arrows represent the
motion of the center (green) and
surround (red) dots, and the rel-
ative motion (center - surround,
blue). vx, vy, p(·), r#, Stest#,
S#, denote horizontal and verti-
cal velocities, probability distri-
butions, neural activities, stim-
uli for which we generate neu-
ral predictions, and stimuli for
which we measure the neural
response that we use for gener-
ating the predictions. C: Mixture
method, based on [anonymous
author], if the encoding is linear
distributional (NSC or DDC), re-
lationships on the right should
match those on the left.

Bayesian model accurately captures the probabilistic compu-
tations of a brain area, then the neural responses to these
‘metamer’ stimuli should be indistinguishable, regardless of
how the posterior beliefs are encoded in the neural activity.
For illustration, we applied this method to identify metamers,
in a recently proposed Bayesian causal inference model of
motion perception (Shivkumar, DeAngelis, & Haefner, 2023)
(Fig. 2A). Our Metamer method can be thought of as a special
case of representational similarity analysis (RSA), and hence
generalized analogously: instead of testing whether neural re-
sponses are the same for stimuli designed to elicit the same
posterior, a (dis)similarity matrix can be constructed between
pairs of posteriors (e.g. based on their variational distance)
corresponding to a large set of stimuli and comparing the ma-
trix to the corresponding matrix based on neural responses as
for RSA.

After confirming that a hypothesized generative model is
compatible with the neural data, we propose testing the en-
coding of posterior beliefs with a method that relies on the dis-
tributional property of the respective probability encoding (Fig.
2B). NSCs are fully distributional in the sense that if the pos-
terior to a specific stimulus j can be written as the mixture of
the posteriors to a number of other stimuli i ̸= j, then the same
mixing weights wi j should allow the neural response distribu-
tion to stimulus j be computed as a mixture of the response
distributions to stimuli i ̸= j (Lengyel, Shivkumar, & Haefner,
2023). If the neural responses are based on a DDC or PPC,

however, this equality will not hold. However, for DDCs, but
not PPCs (which are nonlinear), the relationship will hold in
expectation, i.e. the average response to stimuli j can be writ-
ten as a linear combination of the average responses to stimuli
i ̸= j (Fig. 2B,C). These properties allow for a discrimination
between NSCs, DDCs, and PPCs using neural data.
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