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Abstract
Disentangled representations are common in the brain,
where many neurons are tuned to single factors of task
variation, such as place cells or object-vector cells. Pre-
vious work has shown that neural networks trained with
biological constraints can also learn disentangled repre-
sentations if trained on disentangled data, i.e., data gen-
erated by independent factors. However, in real-world,
open-ended environments, such neatly disentangled data
may not always be available. This raises a fundamental
question: how can agents collect experiences that help
them form disentangled representations? Intrinsic mo-
tivations, such as novelty, efficiently guide humans and
artificial agents during exploration of unfamiliar environ-
ments but it is unclear whether they also support disen-
tangled representation learning. Using a novel method to
extract representation-specific novelty signals, we com-
pute novelty signals from the latent representations of au-
toencoders (AEs) and discrete variational autoencoders
(D-VAEs) and use them as intrinsic exploration rewards
for an artificial agent performing unsupervised learning.
We show that these novelty signals favor exploration of
disentangled over entangled data, and help the agent
learn disentangled representations.

Keywords: disentangled representation; unsupervised learn-
ing; intrinsic motivations; exploration; novelty-seeking

Introduction
Many neurons in the brain are tuned to individual factors un-
derlying task variations (O’Keefe, 1976; Høydal et al., 2019),
forming representations that are referred to as ‘disentangled’
(Bengio, Courville, & Vincent, 2014). Neural networks trained
with biological constraints, such as non-negativity and energy
efficiency, can also learn such disentangled representations
from data characterized by independent factors if trained
on disentangled data. (Whittington et al., 2023) (see also
(Plumbley, 2003; Hyvarinen, Khemakhem, & Morioka, 2023)
for related methods). However, in real-world environments,
data may not always be neatly disentangled. Intrinsic motiva-
tions, such as novelty-seeking (Bellemare et al., 2016; Xu et
al., 2021), (Barto, Mirolli, & Baldassarre, 2013; Becker, Modir-
shanechi, & Gerstner, 2024) guide agents exploring unfamil-
iar environments and help them learn about sparse rewards
by sampling the environment efficiently. However, it is un-
clear whether seeking intrinsic motivations also helps agents
sample disentangled data that they need for disentangled rep-
resentations learning. In this work, we explore the role of
novelty-seeking behaviors in shaping disentangled represen-
tations. Using a novel method proposed in Becker et al.
(2024), we can extract novelty signals from existing network

representations in autoencoders (AEs) (Hinton & Salakhutdi-
nov, 2006) and discrete latent variational autoencoders (D-
VAEs) (Friede et al., 2023) and use them as intrinsic rewards
to guide agents toward data generated by disentangled fac-
tors. In a simple multi-armed bandit setup, we show that nov-
elty seeking enhances disentangled representation learning.
This suggests that novelty-seeking could promote learning of
disentangled representations in an open-ended environment.

Standard AE: Directly Decode
Variational AE: Sample + Decode
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Figure 1: (A) (Top) A data-generating MLP maps latent fac-
tors F to observed data y. (Bottom) Factor-sampling strate-
gies: single varying, entangled, and disentangled factors. Pur-
ple indicates the domain of factors for each strategy. (B) (Top)
An autoencoder learns latent representations from the gen-
erated data via reconstruction. (Bottom) Example mutual in-
formation (MI) matrix quantifies how much information each
latent encodes about each factor. White indicates high MI. (C)
Mean novelty reward in trained AEs over a sequence of 1000
i.i.d. data points sampled from each strategy. Inset: the gap
of mean reward between disentangled and entangled data in-
creases as the number of generative factors increases. (D)
Similar to (C), but using D-VAEs trained on the 3D-Shapes
dataset (Burgess & Kim, 2018).

Methods
Similarity-based Novelty. We define the novelty N(t) of a
stimulus s at time t as a nonlinearly decreasing function of
its empirical frequency p(t)(s) (Barto et al., 2013; Xu et al.,
2021), i.e. N(t)(s) = − log p(t)(s). Using a novel method
called similarity-based novelty Becker et al. (2024), we com-
pute the empirical frequency directly from an existing repre-
sentation, using a mixture model: p(t)(s) = ∑

N
j=1 w(t)

j k j(s),



where k1, ...,kN are probability density functions (‘compo-
nents’) each of which covers a subset of the stimulus space.
The novelty weights w(t), constrained by ∑

N
j w(t)

j = 1, deter-

mine the contribution of each component to p(t)(s) at time
t. The weights are updated to maximize the likelihood of
the observed sequence, yielding the iterative update rule:

∆w(t)
j = α(t)

(
k j(s)

p(t−1)(s)
−1

)
w(t−1)

j , where α(t) is the learning
rate.
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Figure 2: (A) Problem Setup & Training Procedure. Left: A
multi-arm bandit setting where an AE (or D-VAE) selects be-
tween two actions to receive entangled or disentangled data
points, without explicit rewards. Right: The training proce-
dure: (1) Initialization: random data collection without any up-
dates, (2) Learning: training AEs/D-VAEs on collected data,
and (3) Exploration: while freezing AE/D-VAE, the agent ex-
plores using Q-values, updates novelty weights, and stores
data in an experience buffer. (B) Novelty-Seeking vs. Random
Exploration. Left column: novelty-seeking agents preferen-
tially collect data generated by disentangled factors. Right col-
umn: novelty-driven exploration enables the network to learn
more disentangled representation, measured by MIR score
proposed in Whittington et al. (2023). Standard errors shown
in shaded area.

Novelty in AEs & D-VAEs. For autoencoders (AEs, Fig.1B),
we interpret the vector of latent activations in response to
an input s as the vector of component activations k(s) =
(k1(s), ...,kN(s)). This allows us to read-out similarity-based

novelty directly from the network’s activation. In D-VAEs,
the encoder outputs p(z|s) can serve as k(s), where z
is a categorical latent variable with N classes. Further-
more, if a stimulus s can be factorized into F indepen-
dent factors, s = (s1, . . . ,sF), then N(t)(s) = − log p(t)(s) =
−∑

F
f=1 log p(t)(s f ) = −∑

F
f=1 N(t)(s f ). Therefore, in disen-

tangled AEs/D-VAEs, we can compute novelty separately for
groups of neurons, each corresponding primarily to one fac-
tor. For AEs, latent neurons are partitioned into groups and
trained with auxiliary losses that encourage intra-group cor-
relation and discourage inter-group correlation. D-VAEs, with
their categorical latents, naturally capture this separation.

Multi-armed Bandit Framework. We consider a modified
multi-armed bandit where pulling an arm, instead of yielding
an explicit reward, returns a data point s with an implicit novelty
reward r(t) = N(t)(s) (Fig.2A). The agent selects arms using
Boltzmann exploration and updates the estimated value Q(ai)
for arm i as a running average, where no future discounted re-
ward is considered: Q(t+1)(ai) =

1
Ci

r(t)+ Ci−1
Ci

Q(t)(ai), where
Ci is the count of how many times arm i has been chosen.
Each arm generates either disentangled data or entangled
data (Fig.2). For 3D-shape data, the entangled arm produces
samples where wall, object, and floor share the same hue,
while the disentangled arm makes them independent.

Synthetic Data Generation for AEs Following Whittington
et al. (2023), illustrated in Fig. 1A, we sample M indepen-
dent variables F ∈ [0,1]M to generate data y ∈R50 via a one-
hidden-layer MLP with ReLU units, with all weights drawn i.i.d.
from a normal distribution.

Results
Novelty Rewards Incentivize Disentangled Data Data
generated by disentangled factors yield higher intrinsic nov-
elty rewards in trained networks, for both synthetic data (AE,
Fig.1C) and more realistic data from the 3D-Shapes data set
(D-VAE, Fig.1D). We also note that this result still holds even
if we increase the number of data-generating factors (AE,
Fig.1C inset) since it allows more possible combinations of
factors in the generated data.

Novelty-Seeking Shapes Disentangled Representations
In the multi-armed bandit, agents seeking similarity-based
novelty prefer the arm yielding data generated from disentan-
gled factors, i.e. data that is most useful for disentangled rep-
resentation learning. So novelty-seeking agents learn more
disentangled representations (Fig.2B), in contrast to agents
who explore randomly.

Discussion & Future Directions
We use similarity-based novelty Becker et al. (2024) to guide
agents via representation-specific novelty signals, encourag-
ing exploration of data with independent factors and support-
ing disentangled representation learning. Our results suggest
intrinsic motivations may shape representation learning by in-
fluencing the sampling of the environment.
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