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Abstract 

A key feature of human language is recursion, 
involving hierarchical embedding of clauses– a 
process dependent on working memory (WM). 
During speech comprehension, listeners must 
maintain earlier linguistic elements for later 
integration. Even processing adjacent words into 
phrases requires WM resources (Desbordes et al., 
2024), whereas the integration across embedded 
structures depends more on the flexibility of the 
WM system. However, the neural mechanisms 
underlying how WM supports the processing of 
complex recursive linguistic structures remain 
unclear. We constructed English sentences with 
embedded language structures and recorded 
magnetoencephalography (MEG) signals while 34 
native speakers listened to these sentences. Neural 
decoding results demonstrate that during 
embedded structure processing, previously 
encoded information is stored in an activity-silent 
state until the non-adjacent verb of the main clause 
triggers reactivation. Source-level analysis reveals 
that the reactivation first occurs in prefrontal 
regions followed by activation in the temporal 
cortex. This study provides crucial insights into the 
temporal and spatial dynamics of WM functions 
required for unification operations across 
embedded structures. 
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Introduction 

Recursion, as a fundamental computational property of 
human language (Hauser et al., 2002), manifests 
linguistically through embedded structures such as 
relative clauses. This remarkable ability presents a 
fundamental cognitive challenge, as it requires WM to 
maintain and integrate multiple elements across varying 
timescales during language comprehension. To 
understand this highly temporally dynamic process, this 
study employs MEG in combination with multivariate 
pattern analysis and source localization to capture the 
temporal dynamics and spatial distribution of neural 
activity during natural sentence processing. This study 
offers insights into how WM supports flexible 
maintenance and integration of linguistic information 
across embedded structures. 

General Methods 

Participants and experimental design 

We recruited 34 native English speakers (20 females, 
21.0±3.0 years old) with normal hearing and normal 

vision. Participants listened to English sentences with 
embedded structure (e.g. “The dog, who chases the cat, 
jumps over the mud.), followed by a visual figure. Then, 
they judged whether the figure’s semantic content 
matched the sentence (Fig.1A). In the experiment we 
designed 48 unique sentences (including 4 different 
animals for subjects and 2 different verbs), each 
repeated 12 times, resulting in a total of 576 trials.  

MEG recordings 

Brain data was acquired with a 306-sensor TRIUX 
MEGIN system (204 orthogonal planar gradiometers 
and 102 magnetometers, Elekta, Finland). Visual 
stimuli were presented on a rear-projection screen. The 
pre-generated auditory stimuli were delivered by 
MEGIN Natus, consisting of non-magnetic transducers 
and air-conduction tubes. T1-weighted structural MRI 
images were acquired using a Simens 3.0T Prisma MRI 
system. The experimental program was controlled by 
MATLAB (MathWorks) and Psychtoolbox-3. 

Source Localization 

Source localization was performed according to the 
structural image data of each subject. First, the position 
of the individual brains in the MEG system was aligned 
with the MRI structural images (co-registration). Then, 
the MEG data for each trial were projected into the 
reconstructed cortical source space to obtain surface 
source estimates using the dynamic statistical 
parametric mapping method (dSPM) (Dale et al., 2000). 
The noise covariance matrix was calculated using the 
empty room signals on experimental days.  

Neural decoding analysis 

For the MEG decoding analysis, we employed a support 
vector machine (SVM) to classify and reveal the neural 
representation of the subjects (‘dog’/‘cat’/‘fox’/‘goat’) 
during subject encoding phase (after subject (‘dog’) 
onset) and subject-verb integration phase (after Verb 
(‘jumps’) onset). A source-level analysis employing a 
representational similarity analysis (RSA) searchlight 
approach identified brain regions involved in WM 
encoding and reactivation during language 
comprehension. 

Results 

Neural representations of subject during WM 
encoding   

To investigate the dynamic processes of subject 
encoding, we first aligned each MEG epoch according 
to the onset of the subject in each sentence and used 
an SVM to decode ‘dog’ vs ’cat’ vs ’fox’ vs ’goat’ from 
306 sensors. The decoding accuracy is significant after 
subject onset and returns to baseline level after 1.6s 
(Fig.1B, blue line cluster 1: 0s – 1.6s). This result 



demonstrates that subject categories can be 
successfully decoded from neural activity; however, the 
activation is transient. The neural representation 
gradually decays, then transitioning into an activity-
silent state  (Rose et al., 2016; Stokes, 2015; Wolff et 
al., 2017) until reactivated by strong syntactic cues (e.g. 
the verb, blue line cluster 2: 2.1s - 2.8s cluster p < 0.05, 
corrected).  
 

 

Fig. 1 Experimental paradigm and SVM decoding 
results during subject encoding and reactivation phases. 
(A) Experimental design for the MEG experiment (N = 
34), illustrating the natural sentences with embedded 
structures and WM task. (B) Decoding accuracy of 
subject after subject onset. (C) Left: Decoding accuracy 
of subject after verb onset. Right: Correlation between 
subject reactivation strength and memory accuracy of 
subjects. Each dot indicates one participant (n=34, 
Spearman correlation). The shaded area represents the 
95% CI.  

WM reactivation of the earlier subject word 
when the verb is presented 

To examine the relationship between subject (‘dog’) 
reactivation and the presentation of the verb (‘jumps’), 
we aligned MEG epochs to the verb onset. As shown in 
Fig. 1C, the representation-specific reactivation of the 
subject (‘dog’) occurred approximately 600ms after the 
verb (‘jumps’) onset, demonstrating that verbs trigger 
targeted reactivation of their syntactically related 
subjects from WM activity-silent state (Fig.1C left: blue 
line: 0.6s – 1.4s, cluster p < 0.05, corrected). The 
neural-behavioural correlation reveals a positive 
correlation between subject reactivation strength and 

memory accuracy of subjects (Fig.1C right: r=0.34, 
p=0.046; Spearman’s correlation). These results 
indicate that long-distance subject-verb integration 
involves selective reactivation of the subject, with the 
reactivation strength positively correlating with memory 
performance.  

WM Reactivation in prefrontal cortex and 
temporal cortex 

Source-level RSA searchlight analyses revealed the 
involvement of bilateral temporal cortex when the 
subject (‘dog’) is encoded into WM (peak at 0.22s). 
During WM reactivation, the representations of the 
subject ('dog') initially emerged in the prefrontal cortex 
(peak at 0.62s) and later engaged the bilateral superior 
temporal cortex (peak at 1.0s), suggesting that linguistic 
information is transformed to higher-order frontal 
regions, and triggers top-down reactivation in encoding 
related areas when integration is required. 

 
Fig. 2 Source-level searchlight results during subject 
encoding and reactivation periods. (A) WM encoding of 
subjects decoded from temporal lobes. (B) WM 
reactivation of subjects decoded from frontal and 
temporal lobes. 

Conclusion 

Our findings reveal representational-specific 
reactivation across embedded language structures. 
This suggests that WM for word information is 
maintained as activity-silent representations but can be 
flexibly retrieved when required later in the sentence. 
This reactivation signals initially emerges in prefrontal 
cortex before engaging temporal regions, pointing to a 
functional network supporting reactivation and 
unification operations (Buchsbaum, 2016; Hagoort, 
2013; Pylkkänen, 2019). These dynamic processes 
illuminate how linguistic information is flexibly 
maintained and transformed in WM during natural 
language comprehension, offering crucial insights into 



the neural foundations of our uniquely human language 
abilities (Dijksterhuis et al., 2024; Lewis et al., 2006). 
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