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Abstract 
Compositionality is a fundamental feature of 
cognition. Humans can break down learned 
knowledge into constituents and reassemble them 
flexibly to solve new problems. Using fMRI, we 
investigated the neural underpinnings of 
compositionality in a task where discrete features 
indicated locations on spatial axes. Participants 
were trained on a subset of stimuli with feedback 
and tested on the held-out without feedback. 
Successful generalization required decomposing the 
trained stimulus-location associations into rules and 
recombining the rules to solve the test. Different 
brain regions adopted distinct representation 
strategies: rules were represented in 
high-dimensional parallel manifolds in the 
hippocampus and composed by vmPFC to solve the 
test; the superior parietal gyrus put the test stimuli 
into a low-dimensional spatial reference frame; V1 
represented both training and test stimuli as their 
locations on the ground-truth map. 
 

Introduction 
The brain’s language of thought is compositional (Fodor 
& Pylyshyn, 1988; Frankland & Greene, 2020). 
Extensive literature has documented that biological 
agents learn simple building blocks that can be 
recomposed to solve novel problems efficiently (Harlow, 
1949; Zhou et al., 2021; Samborska et al., 2022; Dekker 
et al., 2022; Luettgau et al., 2024). Across linguistic and 
non-linguistic domains, abundant evidence suggests that 
the representation of a compound (e.g. phrases) is 
related to its constituents (e.g. words)(Barron et al., 
2013; Pylkkänen, 2019; Schwartenbeck et al., 2023). In 
computational linguistics and machine learning literature, 
vector addition is commonly used as the operation for 
binding the constituents into a compound, i.e., 
superimposing the patterns of constituents to form the 
representation of the compound (Mitchell & Lapata, 
2008, 2010).  

We investigated the neural representation supporting 
compositional generalization in a task (Dekker et al., 
2022) that asked participants to predict spatial (treasure) 
locations based on nonspatial stimuli (Fig.1A). Two 

hidden rules mapped discrete stimulus features onto the 
continuous spatial axes (e.g. shapes onto an x-position 
and colors onto a y-position, Fig.1B). Participants were 
trained on a subset of stimuli-location associations and 
tested on the holdout set without feedback (Fig.1B). 
After pretraining, we scanned the participants whilst 
making decisions about all stimuli without feedback. 
Successful test performance required: 1) decomposing 
the trained associations into two rules; 2) recombining 
the rules to solve the test. We focused on participants 
who successfully solved the test, i.e., generalizers, and 
asked how their neural representation solved the 
decomposition and recomposition problem.  

Figure 1. (A) The treasure hunt task performed in the 
scanner. (B) Groundtruth map of treasure locations. 
Stimuli highlighted in the blue box were training stimuli; 
others were test stimuli. (C) Response map of 
generalizers. Each dot indicated a generalizer’s 
response to a stimulus averaged across runs.  
 

Potential representation strategies 
To motivate our analyses, we laid out the potential 
representation strategies. First, we considered the 
dimensionality of rule representation. Before training, the 
representation of discrete features was high-dimensional 
(highD), allowing for feature separation (Fig.2A left). 
After training, the representation could remain highD or 
compress to a low-dimensional axis (Fig.2A right, lowD). 
To address this, we estimated the dimensionality of rule 
representation with cross-validated singular value 
decomposition (Ahlheim & Love, 2018). Next, we 
considered the relationship between rules. Space could 
be used as a scaffold to represent the rules. If so, the 
rules would be represented orthogonally (Fig.2B left). 
Alternatively, a shared relational primitive, magnitude, 
could be used to describe the progression along the 
linear axis (left-ness and top-ness). If so, the rules would 
be represented in parallel (Fig.2B right, example of top 
of y aligned to left of x). We quantified axes alignment 

 

https://www.zotero.org/google-docs/?rflucB
https://www.zotero.org/google-docs/?rflucB
https://www.zotero.org/google-docs/?rflucB
https://www.zotero.org/google-docs/?dkCjq9
https://www.zotero.org/google-docs/?dkCjq9
https://www.zotero.org/google-docs/?rrat3H
https://www.zotero.org/google-docs/?rrat3H
https://www.zotero.org/google-docs/?uPewDl
https://www.zotero.org/google-docs/?uPewDl
https://docs.google.com/document/d/1PWP29CdWHqRCc_v9ucVMjx37sTYTEC69tkJSTcVmaIk/edit?tab=t.0#bookmark=kix.xs183b7gyut5
https://docs.google.com/document/d/1PWP29CdWHqRCc_v9ucVMjx37sTYTEC69tkJSTcVmaIk/edit?tab=t.0#bookmark=kix.xs183b7gyut5
https://docs.google.com/document/d/1PWP29CdWHqRCc_v9ucVMjx37sTYTEC69tkJSTcVmaIk/edit?tab=t.0#bookmark=kix.xs183b7gyut5
https://www.zotero.org/google-docs/?Ci5rMp


with a parallelism score (PS), the average cosine 
similarity between coding directions of different axes 
(e.g. crab-whale vs yellow-cyan). 

    
Figure 2. Schematic illustration of the hypotheses. 
 

Main Findings 
Participants were classified into generalizers (N=41) and 
non-generalizers (N=15) following Dekker et al. (2022). 
The generalizers’ responses in the scanner (Fig.1C) 
closely followed the groundtruth map (Fig.1B). Using 
searchlight representation similarity analysis (RSA), we 
found a lowD spatial map only for the test stimuli in the 
superior parietal gyrus (SPG) but for all stimuli in the 
early visual area (V1). We showed the V1 representation 
using multidimensional scaling (MDS) in Fig.3C. 

 
Figure 3. (A-B) SPG and V1 dimensionality. (C) V1 MDS; 
note how it resembles ground truth. 
 

In stark contrast to V1 and SPG (Fig.3A-B), we found 
a higher-dimensional representation for both rules in the 
hippocampus (HPC) than in V1 and SPG (Fig.4A, both 
p<0.001). Moreover, in HPC, dimensionality was 
positively correlated with linear decodability of features 
after controlling for noise (r=0.44,p=0.002). Therefore, 
high dimensionality in HPC was not simply due to noise 
but helped maintain feature separation. HPC also 
showed abstraction of relational structure across the 
rules. Coding directions on different axes were 
significantly more parallel than expected by chance 
(absolute PS compared against null, p<0.001), with 
some generalizers being top-right aligned while some 
being top-left aligned (Fig.4B&D). This was further 
validated by a cross-validated RSA where we estimated 
the alignment in half of the data to generate a parallel 

model and let it compete with the orthogonal model to 
explain the neural RDM of the remaining half (Fig.4C).  

    
Figure 4. HPC representation. (A) Dimensionality. (B) PS 
for individual generalizers (sticks) and null distribution of 
PS (shaded area). Color indicates axis alignment 
classified by comparing each PS against the null. (C) 
Cross-validated RSA. (D) MDS of top-left parallel 
generalizers in (B): coding directions of the same colour 
pair were parallel between squares and diamonds. 
 
In summary, we revealed the different representation 
strategies adopted by several regions in a compositional 
rule generalization task. HPC formed an abstract 
representation of the shared relational structure between 
rules, and the representation of each rule was 
high-dimensional. We further checked if test stimuli 
representation could be composed from the relevant 
training stimuli under the assumption of vector addition 
(cyan crab=cyan+crab). This analysis revealed that 
vmPFC but not HPC combined the rules in a highD 
space.  Finally, the transformation of test stimuli 
representation into a lowD spatial map was found in 
SPG, whereas V1 represented all stimuli in a way that 
resembled the ground truth. 
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